Algorithm for Skeleton Action Recognition by Integrating Attention Mechanism and Convolutional Neural Networks

被引:0
|
作者
Liu, Jianhua [1 ]
机构
[1] Weifang Univ, Coll Phys Educ, Weifang 261061, Peoples R China
关键词
Attention mechanism; convolutional neural network; action recognition; central differential network; spacetime converter; directed graph convolution;
D O I
10.14569/IJACSA.2023.0140867
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An action recognition model based on 3D skeleton data may experience a decrease in recognition accuracy when facing complex backgrounds, and it is easy to overlook the local connection between dynamic gradient information and dynamic actions, resulting in a decrease in the fault tolerance of the constructed model. To achieve accurate and fast capture of human skeletal movements, a directed graph convolutional network recognition model that integrates attention mechanism and convolutional neural network is proposed. By combining spacetime converter and central differential graph convolution, a corresponding central differential converter graph convolutional network model is constructed to obtain dynamic gradient information in actions and calculate local connections between dynamic actions. The research outcomes express that the cross-target benchmark recognition rate of the directed graph convolutional network recognition model is 92.3%, and the cross-view benchmark recognition rate is 97.3%. The accuracy of Top -1 is 37.6%, and the accuracy of Top-5 is 60.5%. The cross-target recognition rate of the central differential converter graph convolutional network model is 92.9%, and the cross-view benchmark recognition rate is 97.5%. Undercross-target and cross-view benchmarks, the average recognition accuracy for similar actions is 81.3% and 88.9%, respectively. The accuracy of the entire action recognition model in single-person multi-person action recognition experiments is 95.0%. The outcomes denote that the model constructed by the research institute has higher recognition rate and more stable performance compared to existing neural network recognition models, and has certain research value.
引用
收藏
页码:604 / 613
页数:10
相关论文
共 50 条
  • [21] Central Attention Mechanism for Convolutional Neural Networks
    Geng, Y.X.
    Wang, L.
    Wang, Z.Y.
    Wang, Y.G.
    IAENG International Journal of Computer Science, 2024, 51 (10) : 1642 - 1648
  • [22] Visualization of Convolutional Neural Networks with Attention Mechanism
    Yuan, Meng
    Tie, Bao
    Lin, Dawei
    HUMAN CENTERED COMPUTING, HCC 2021, 2022, 13795 : 82 - 93
  • [23] Fourier analysis on robustness of graph convolutional neural networks for skeleton-based action recognition
    Tanaka, Nariki
    Kera, Hiroshi
    Kawamoto, Kazuhiko
    Computer Vision and Image Understanding, 2024, 240
  • [24] Fourier analysis on robustness of graph convolutional neural networks for skeleton-based action recognition
    Tanaka, Nariki
    Kera, Hiroshi
    Kawamoto, Kazuhiko
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 240
  • [25] Multi-scale sampling attention graph convolutional networks for skeleton-based action recognition
    Tian, Haoyu
    Zhang, Yipeng
    Wu, Hanbo
    Ma, Xin
    Li, Yibin
    NEUROCOMPUTING, 2024, 597
  • [26] An efficient attention module for 3d convolutional neural networks in action recognition
    Jiang, Guanghao
    Jiang, Xiaoyan
    Fang, Zhijun
    Chen, Shanshan
    APPLIED INTELLIGENCE, 2021, 51 (10) : 7043 - 7057
  • [27] An efficient attention module for 3d convolutional neural networks in action recognition
    Guanghao Jiang
    Xiaoyan Jiang
    Zhijun Fang
    Shanshan Chen
    Applied Intelligence, 2021, 51 : 7043 - 7057
  • [28] Action Tree Convolutional Networks: Skeleton-Based Human Action Recognition
    Liu, Wenjie
    Zhang, Ziyi
    Han, Bing
    Zhu, Chenhui
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 783 - 792
  • [29] Memory Attention Networks for Skeleton-based Action Recognition
    Xie, Chunyu
    Li, Ce
    Zhang, Baochang
    Chen, Chen
    Han, Jungong
    Liu, Jianzhuang
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1639 - 1645
  • [30] Memory Attention Networks for Skeleton-Based Action Recognition
    Li, Ce
    Xie, Chunyu
    Zhang, Baochang
    Han, Jungong
    Zhen, Xiantong
    Chen, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4800 - 4814