Multi-omics analysis using machine learning and implications for cancer studies

被引:0
|
作者
Asada, Ken [1 ,2 ]
Takasawa, Ken
Shiraishi, Kouya [3 ]
Horinouchi, Hidehito [4 ]
Yoshida, Yukihiro [5 ]
Mukai, Masami [6 ]
Shinkai, Norio [1 ,2 ,7 ]
Yatabe, Yasushi [8 ]
Kohno, Takashi [9 ]
Hamamoto, Ryuji [1 ,2 ,7 ]
机构
[1] RIKEN Ctr AIP project, Canc Transl Res Team, Tokyo, Japan
[2] Natl Canc Ctr, Div Med AI Res Dev, Res Inst, Tokyo, Japan
[3] Natl Canc Ctr, Div Genome Biol, Res Inst, Tokyo, Japan
[4] Natl Canc Ctr, Dept Thorac Oncol, Tokyo, Japan
[5] Natl Canc Ctr, Dept Thorac Surg, Tokyo, Japan
[6] Natl Canc Ctr, Dept Med Info, Tokyo, Japan
[7] Tokyo Med Dent Univ, NCC Canc Sci, Tokyo, Japan
[8] Natl Canc Ctr, Dept Diagnost Pathol, Tokyo, Japan
[9] Natl Canc Ctr, Div Geneome Biol, C CAT, Res Inst, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
S8-6
引用
收藏
页码:231 / 231
页数:1
相关论文
共 50 条
  • [41] Integrated multi-omics with machine learning to uncover the intricacies of kidney disease
    Liu, Xinze
    Shi, Jingxuan
    Jiao, Yuanyuan
    An, Jiaqi
    Tian, Jingwei
    Yang, Yue
    Zhuo, Li
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [42] Integration of pan-cancer multi-omics data for novel mixed subgroup identification using machine learning methods
    Khadirnaikar, Seema
    Shukla, Sudhanshu
    Prasanna, S. R. M.
    PLOS ONE, 2023, 18 (10):
  • [43] Integrated multi-omics analysis and machine learning identify hub genes and potential mechanisms of resistance to immunotherapy in gastric cancer
    Wang, Jinsong
    Feng, Jia
    Chen, Xinyi
    Weng, Yiming
    Wang, Tong
    Wei, Jiayan
    Zhan, Yujie
    Peng, Min
    AGING-US, 2024, 16 (08): : 7331 - 7356
  • [44] Metabolism pathway-based subtyping in endometrial cancer: An integrated study by multi-omics analysis and machine learning algorithms
    Liu, Xiaodie
    Wang, Wenhui
    Zhang, Xiaolei
    Liang, Jing
    Feng, Dingqing
    Li, Yuebo
    Xue, Ming
    Ling, Bin
    MOLECULAR THERAPY NUCLEIC ACIDS, 2024, 35 (02):
  • [45] Prediction of metabolic risk in childhood obesity using machine learning models with multi-omics data
    Torres-Martos, A.
    Anguita-Ruiz, A.
    Bustos-Aibar, M.
    Alcala, R.
    Alcala-Fdez, J.
    Aguilera, C. M.
    ANNALS OF NUTRITION AND METABOLISM, 2022, 78 (SUPPL 3) : 22 - 22
  • [46] Machine learning and integrative multi-omics network analysis for survival prediction in acute myeloid leukemia
    Kosvyra Α.
    Karadimitris Α.
    Papaioannou Μ.
    Chouvarda I.
    Computers in Biology and Medicine, 2024, 178
  • [47] A New Era of Neuro-Oncology Research Pioneered by Multi-Omics Analysis and Machine Learning
    Takahashi, Satoshi
    Takahashi, Masamichi
    Tanaka, Shota
    Takayanagi, Shunsaku
    Takami, Hirokazu
    Yamazawa, Erika
    Nambu, Shohei
    Miyake, Mototaka
    Satomi, Kaishi
    Ichimura, Koichi
    Narita, Yoshitaka
    Hamamoto, Ryuji
    BIOMOLECULES, 2021, 11 (04)
  • [48] An overview of advances in multi-omics analysis in prostate cancer
    Zhang, Enchong
    Zhang, Mo
    Shi, Changlong
    Sun, Li
    Shan, Liping
    Zhang, Hui
    Song, Yongsheng
    LIFE SCIENCES, 2020, 260
  • [49] Radiation Pneumonitis Prediction Using Multi-Omics Fusion Based on a Novel Machine Learning Pipeline
    Li, Bing
    Zheng, Xiaoli
    Guo, Wei
    Wang, Yunhan
    Mao, Ronghu
    Cheng, Xiuyan
    Fan, Chengcheng
    Wang, Ting
    Lou, Zhaoyang
    Lei, Hongchang
    Meng, Lingguang
    Zhang, Yuanpeng
    Ge, Hong
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2022, 12
  • [50] Multi-omics Analysis of the Role of PHGDH in Colon Cancer
    Dai, Zhihui
    Chen, Lin
    Pan, KaiLing
    Zhao, Xiao Ya
    Xu, WenXia
    Du, JinLin
    Xing, Chungen
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22 : 15330338221145994