Few-Shot Knowledge Graph Completion Model Based on Relation Learning

被引:0
|
作者
Li, Weijun [1 ,2 ]
Gu, Jianlai [2 ]
Li, Ang [2 ]
Gao, Yuxiao [2 ]
Zhang, Xinyong [2 ]
机构
[1] North Minzu Univ, Key Lab Images & Grap Intelligent Proc, State Ethn Affairs Commiss, Yinchuan 750021, Peoples R China
[2] North Minzu Univ, Sch Comp Sci & Engn, Yinchuan 750021, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 17期
基金
中国国家自然科学基金;
关键词
knowledge graph; complete the knowledge graph; few-shot relation; neighborhood aggregation; link prediction;
D O I
10.3390/app13179513
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Considering the complexity of entity pair relations and the information contained in the target neighborhood in few-shot knowledge graphs (KG), existing few-shot KG completion methods generally suffer from insufficient relation representation learning capabilities and neglecting the contextual semantics of entities. To tackle the above problems, we propose a Few-shot Relation Learning-based Knowledge Graph Completion model (FRL-KGC). First, a gating mechanism is introduced during the aggregation of higher-order neighborhoods of entities in formation, enriching the central entity representation while reducing the adverse effects of noisy neighbors. Second, during the relation representation learning stage, a more accurate relation representation is learned by using the correlation between entity pairs in the reference set. Finally, an LSTM structure is incorporated into the Transformer learner to enhance its ability to learn the contextual semantics of entities and relations and predict new factual knowledge. We conducted comparative experiments on the publicly available NELL-One and Wiki-One datasets, comparing FRL-KGC with six few-shot knowledge graph completion models and five traditional knowledge graph completion models for five-shot link prediction. The results showed that FRL-KGC outperformed all comparison models in terms of MRR, Hits@10, Hits@5, and Hits@1 metrics.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Relation-oriented few-shot knowledge graph prototype networks
    Xue, Yingying
    Song, Aibo
    Jin, Jiahui
    Peng, Hui
    Qiu, Jingyi
    Fang, Xiaolin
    Zhai, Xiaorui
    NEUROCOMPUTING, 2024, 575
  • [42] Sample feature enhancement model based on heterogeneous graph representation learning for few-shot relation classification
    Xing, Zhezhe
    Ye, Yuxin
    Song, Rui
    Teng, Yun
    Li, Ziheng
    Liu, Jiawen
    Information Sciences, 2025, 690
  • [43] LEARNING RELATION BY GRAPH NEURAL NETWORK FOR SAR IMAGE FEW-SHOT LEARNING
    Yang, Rui
    Xu, Xin
    Li, Xirong
    Wang, Lei
    Pu, Fangling
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1743 - 1746
  • [44] Generalized Few-Shot Classification with Knowledge Graph
    Liu, Dianqi
    Bai, Liang
    Yu, Tianyuan
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7649 - 7666
  • [45] Generalized Few-Shot Classification with Knowledge Graph
    Dianqi Liu
    Liang Bai
    Tianyuan Yu
    Neural Processing Letters, 2023, 55 : 7649 - 7666
  • [46] Few-Shot Knowledge Graph Entity Typing
    Zhu, Guozhen
    Zhang, Zhongbao
    Su, Sen
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT I, 2022, 13280 : 328 - 340
  • [47] MULTIFORM: Few-Shot Knowledge Graph Completion via Multi-modal Contexts
    Zhang, Xuan
    Liang, Xun
    Zheng, Xiangping
    Wu, Bo
    Guo, Yuhui
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 172 - 187
  • [48] Knowledge Graph Reasoning for Few-Shot Problems
    Zhang, Xiaoli
    Guo, Jinhui
    Liang, Kun
    Xu, Gefei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14878 : 187 - 196
  • [49] Knowledge Graph enhanced Multimodal Learning for Few-shot Visual Recognition
    Han, Mengya
    Zhan, Yibing
    Yu, Baosheng
    Luo, Yong
    Du, Bo
    Tao, Dacheng
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,