ENHANCING HUMAN ACTIVITY RECOGNITION THROUGH SENSOR FUSION AND HYBRID DEEP LEARNING MODEL

被引:1
|
作者
Tarekegn, Adane Nega [1 ]
Ullah, Mohib [1 ]
Cheikh, Faouzi Alaya [1 ]
Sajjad, Muhammad [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Software Data & Digital Environm SDDE Res Grp, Dept Comp Sci, Gjovik, Norway
关键词
sensor fusion; human activity recognition; deep learning; smart belt; wearable sensor;
D O I
10.1109/ICASSPW59220.2023.10193698
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Wearable-based human activity recognition (HAR) is essential for several applications, such as health monitoring, physical training, and rehabilitation. However, most HAR systems presently depend on a single sensor, typically a smartphone, due to its widespread use. To improve performance and adapt to various scenarios, this study focuses on a smart belt equipped with acceleration and gyroscope sensors for detecting activities of daily living (ADLs). The collected data was pre-processed, fused and used to train a hybrid deep learning model incorporating a CNN and BiLSTM network. We evaluated the effect of window length on recognition accuracy and conducted a performance analysis of the proposed model. Our framework achieved an overall accuracy of 96% at a window length of 5 seconds, demonstrating its effectiveness in recognizing ADLs. The results show that belt sensor fusion for HAR provides valuable insights into human behaviour and could enhance applications such as healthcare, fitness, and sports training.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition
    Yen, Chih-Ta
    Liao, Jia-Xian
    Huang, Yi-Kai
    SENSORS, 2021, 21 (24)
  • [13] Human activity recognition through deep learning: Leveraging unique and common feature fusion in wearable multi-sensor systems
    Liu, Kang
    Gao, Chang
    Li, Binbin
    Liu, Wenyuan
    APPLIED SOFT COMPUTING, 2024, 151
  • [14] Enhancing speech emotion recognition through deep learning and handcrafted feature fusion
    Eris, Fatma Gunes
    Akbal, Erhan
    APPLIED ACOUSTICS, 2024, 222
  • [15] Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques
    Wang, Huaijun
    Zhao, Jing
    Li, Junhuai
    Tian, Ling
    Tu, Pengjia
    Cao, Ting
    An, Yang
    Wang, Kan
    Li, Shancang
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [16] A Novel Hybrid Deep Learning Model for Human Activity Recognition Based on Transitional Activities
    Irfan, Saad
    Anjum, Nadeem
    Masood, Nayyer
    Khattak, Ahmad S.
    Ramzan, Naeem
    SENSORS, 2021, 21 (24)
  • [17] A Hybrid Deep Model Using Deep Learning and Dense Optical Flow Approaches for Human Activity Recognition
    Tanberk, Senem
    Kilimci, Zeynep Hilal
    Tukel, Dilek Bilgin
    Uysal, Mitat
    Akyokus, Selim
    IEEE ACCESS, 2020, 8 : 19799 - 19809
  • [18] Evaluation of deep learning model for human activity recognition
    Bhat, Owais
    Khan, Dawood A.
    EVOLVING SYSTEMS, 2022, 13 (01) : 159 - 168
  • [19] Evaluation of deep learning model for human activity recognition
    Owais Bhat
    Dawood A Khan
    Evolving Systems, 2022, 13 : 159 - 168
  • [20] Hybrid lightweight Deep-learning model for Sensor-fusion basketball Shooting-posture recognition
    Fan, Jingjin
    Bi, Shuoben
    Xu, Ruizhuang
    Wang, Luye
    Zhang, Li
    MEASUREMENT, 2022, 189