Decomposed Meta-Learning for Few-Shot Sequence Labeling

被引:1
|
作者
Ma, Tingting [1 ]
Wu, Qianhui [2 ]
Jiang, Huiqiang [3 ]
Lin, Jieru [1 ]
Karlsson, Borje F. [2 ]
Zhao, Tiejun [1 ]
Lin, Chin-Yew [2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Microsoft Res Asia, Beijing 100080, Peoples R China
[3] Microsoft Res Asia, Shanghai 200232, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Labeling; Metalearning; Tagging; Detectors; Adaptation models; Speech processing; Few-shot sequence labeling; task decomposition; meta-learning; NAMED ENTITY RECOGNITION;
D O I
10.1109/TASLP.2024.3372879
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Few-shot sequence labeling is a general problem formulation for many natural language understanding tasks in data-scarcity scenarios, which require models to generalize to new types via only a few labeled examples. Recent advances mostly adopt metric-based meta-learning and thus face the challenges of modeling the miscellaneous Other prototype and the inability to generalize to classes with large domain gaps. To overcome these challenges, we propose a decomposed meta-learning framework for few-shot sequence labeling that breaks down the task into few-shot mention detection and few-shot type classification, and sequentially tackles them via meta-learning. Specifically, we employ model-agnostic meta-learning (MAML) to prompt the mention detection model to learn boundary knowledge shared across types. With the detected mention spans, we further leverage the MAML-enhanced span-level prototypical network for few-shot type classification. In this way, the decomposition framework bypasses the requirement of modeling the miscellaneous Other prototype. Meanwhile, the adoption of the MAML algorithm enables us to explore the knowledge contained in support examples more efficiently, so that our model can quickly adapt to new types using only a few labeled examples. Under our framework, we explore a basic implementation that uses two separate models for the two subtasks. We further propose a joint model to reduce model size and inference time, making our framework more applicable for scenarios with limited resources. Extensive experiments on nine benchmark datasets, including named entity recognition, slot tagging, event detection, and part-of-speech tagging, show that the proposed approach achieves start-of-the-art performance across various few-shot sequence labeling tasks.
引用
收藏
页码:1980 / 1993
页数:14
相关论文
共 50 条
  • [31] A concise review of recent few-shot meta-learning methods
    Li, Xiaoxu
    Sun, Zhuo
    Xue, Jing-Hao
    Ma, Zhanyu
    NEUROCOMPUTING, 2021, 456 : 463 - 468
  • [32] Few-shot and meta-learning methods for image understanding: a survey
    He, Kai
    Pu, Nan
    Lao, Mingrui
    Lew, Michael S. S.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [33] Weakly Supervised Few-Shot Segmentation via Meta-Learning
    Gama, Pedro H. T.
    Oliveira, Hugo
    Marcato Jr, Jose
    dos Santos, Jefersson A.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1784 - 1797
  • [34] Few-shot time series forecasting in a meta-learning framework
    Ma P.
    Ni Z.
    Ma, Ping (1533321767@qq.com), 1600, IOS Press BV (46): : 8903 - 8916
  • [35] Meta-Learning for Multi-Label Few-Shot Classification
    Simon, Christian
    Koniusz, Piotr
    Harandi, Mehrtash
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 346 - 355
  • [36] Differentiable Meta-Learning Model for Few-Shot Semantic Segmentation
    Tian, Pinzhuo
    Wu, Zhangkai
    Qi, Lei
    Wang, Lei
    Shi, Yinghuan
    Gao, Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12087 - 12094
  • [37] Few-shot and meta-learning methods for image understanding: a survey
    Kai He
    Nan Pu
    Mingrui Lao
    Michael S. Lew
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [38] Meta-Learning With Adaptive Learning Rates for Few-Shot Fault Diagnosis
    Chang, Liang
    Lin, Yan-Hui
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 5948 - 5958
  • [39] Usage of few-shot learning and meta-learning in agriculture: A literature review
    Porto, Joao Vitor de Andrade
    Dorsa, Arlinda Cantero
    Weber, Vanessa Aparecida de Moraes
    Porto, Karla Rejane de Andrade
    Pistori, Hemerson
    SMART AGRICULTURAL TECHNOLOGY, 2023, 5
  • [40] Meta-learning Approaches for Few-Shot Learning: A Survey of Recent Advances
    Gharoun, Hassan
    Momenifar, Fereshteh
    Chen, Fang
    Gandomi, Amir H.
    ACM COMPUTING SURVEYS, 2024, 56 (12)