In a recent work [3], the authors established new results about general linear Mahler systems in several variables from the perspective of transcendental number theory, such as a multivariate extension of Nishioka's theorem. Working with functions of several variables and with different Mahler transformations leads to a number of complications, including the need to prove a general vanishing theorem and to use tools from ergodic Ramsey theory and Diophantine approximation (e.g., a variant of the p-adic Schmidt subspace theorem). These complicationsmake the proof of themain results proved in [3] rather intricate. In this article, we describe our new approach in the special case of linearMahler systems in one variable. This leads to a new, elementary, and self-contained proof of Nishioka's theorem, as well as of the lifting theorem more recently obtained by Philippon [23] and the authors [1]. Though the general strategy remains the same as in [3], the proof turns out to be greatly simplified. Beyond its own interest, we hope that reading this article will facilitate the understanding of the proof of themain results obtained in [3].