Coalescence-Induced Jumping of Nanodroplets in a Perpendicular Electric Field: A Molecular Dynamics Study

被引:2
|
作者
Wang, Dan-Qi [1 ,2 ]
Wang, Zi-Jie [1 ,2 ]
Wang, Shao-Yu [1 ,2 ]
Yang, Yan-Ru [1 ,2 ]
Zheng, Shao-Fei [1 ,2 ]
Lee, Duu-Jong [3 ,4 ]
Wang, Xiao-Dong [1 ,2 ]
机构
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Res Ctr Engn Thermophys, Beijing 102206, Peoples R China
[3] City Univ Hong Kong, Dept Mech Engn, Kowloon Tong, Hong Kong 999077, Peoples R China
[4] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Chungli 32003, Taiwan
基金
中国国家自然科学基金;
关键词
ENHANCED CONDENSATION; DROPLETS; WATER; WETTABILITY; SIMULATION; SURFACES;
D O I
10.1021/acs.langmuir.3c03758
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Coalescence-induced jumping has promised a substantial reduction in the droplet detachment size and consequently shows great potential for heat-transfer enhancement in dropwise condensation. In this work, using molecular dynamics simulations, the evolution dynamics of the liquid bridge and the jumping velocity during coalescence-induced nanodroplet jumping under a perpendicular electric field are studied for the first time to further promote jumping. It is found that using a constant electric field, the jumping performance at the small intensity is weakened owing to the continuously decreased interfacial tension. There is a critical intensity above which the electric field can considerably enhance the stretching effect with a stronger liquid-bridge impact and, hence, improve the jumping performance. For canceling the inhibition effect of the interfacial tension under the condition of the weak electric field, a square-pulsed electric field with a paused electrical effect at the expansion stage of the liquid bridge is proposed and presents an efficient nanodroplet jumping even using the weak electric field.
引用
收藏
页码:3248 / 3259
页数:12
相关论文
共 50 条
  • [31] A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces
    Ling, Fengru
    Huang, Gang
    Tang, Hao
    Geng, Mengmeng
    Ye, Yutong
    Qin, Zhangrong
    3RD INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND INDUSTRIAL APPLICATIONS, 2019, 1300
  • [32] Numerical Investigation of Coalescence-Induced Droplet Jumping from a Hydrophobic Fiber
    Huang, Jun-Jie
    Xiao, Xu-Bin
    Li, Yu-Jie
    LANGMUIR, 2018, 34 (47) : 14186 - 14195
  • [33] Enhanced coalescence-induced droplet jumping on superhydrophobic surfaces with stepped structures
    Yin, Cuicui
    Wang, Tianyou
    Che, Zhizhao
    Wang, Juan
    Sun, Kai
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [34] Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch
    Wasserfall, Joram
    Figueiredo, Patric
    Kneer, Reinhold
    Rohlfs, Wilko
    Pischke, Philipp
    PHYSICAL REVIEW FLUIDS, 2017, 2 (12):
  • [35] Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces
    Attarzadeh, Reza
    Dolatabadi, Ali
    PHYSICS OF FLUIDS, 2017, 29 (01)
  • [36] Effects of protuberant structure on coalescence-induced jumping of droplets on superhydrophobic surfaces
    Wang, Yuhang
    Rohlfs, Wilko
    Kneer, Reinhold
    PHYSICS OF FLUIDS, 2023, 35 (08)
  • [37] Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces
    Chen, Xuemei
    Weibel, Justin A.
    Garimella, Suresh V.
    ACS OMEGA, 2017, 2 (06): : 2883 - 2890
  • [38] Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces
    Wang, Kai
    Li, Ruixin
    Liang, Qianqing
    Jiang, Rui
    Zheng, Yi
    Lan, Zhong
    Ma, Xuehu
    APPLIED PHYSICS LETTERS, 2017, 111 (06)
  • [39] Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces
    Xuemei Chen
    Ravi S. Patel
    Justin A. Weibel
    Suresh V. Garimella
    Scientific Reports, 6
  • [40] Enhancement of coalescence-induced nanodroplet jumping on superhydrophobic surfaces with designed structures
    Dai, Arui
    Liu, Shenglin
    Yin, Cuicui
    Xiong, Yongnan
    Luo, Tiegang
    Wang, Juan
    Zheng, Kaihong
    PHYSICS OF FLUIDS, 2025, 37 (04)