QUANTIFICATION ANALYSIS OF ATMOSPHERIC DOWNWARD RADIANCE ON SNOW EMISSION MEASURED BY GROUND-BASED RADIOMETER AT 90 GHZ

被引:0
|
作者
Zhou, Jingtian [1 ,2 ,3 ]
Qiu, Yubao [1 ,2 ,4 ,5 ]
Shi, Lijuan [1 ,2 ,4 ,5 ,6 ]
Lemmetyinen, Juha [4 ,5 ,6 ,7 ]
Shi, Jianchen [8 ]
机构
[1] Chinese Acad Sci, Key Lab Digital Earth Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Joint Res Ctr Arct Observat, Aerosp Informat Res Inst, Beijing, Peoples R China
[5] Chinese Acad Sci, Arctic Space Ctr, Finnish Meteorol Inst JRC AO, Beijing, Peoples R China
[6] Finnish Meteorol Inst JRC AO, FL-99600 Sodankyla, Finland
[7] Finnish Meteorol Inst, FL-00560 Helsinki, Finland
[8] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
snow; passive microwave remote sensing; atmospheric downward radiance; NoSREx; MICROWAVE; COVER;
D O I
10.1109/IGARSS52108.2023.10281699
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With the passive microwave remote sensing of snow, the high frequency (80-100 GHz) has the advantages of high resolution and fresh shallow snow detection, however, the application of high frequency for snow observation is often limited by atmosphere influence. Until now, few studies have quantified the atmospheric influence of high frequency in snow observations. The scattering and emission of the water vapor and cloud liquid water in the atmosphere cause the increment in Brightness Temperature (TB). To explore the influence of the atmosphere on snow cover observations, we utilize Nordic Snow Radar Experiment (NoSREx) data and the Microwave Emission Model of Layered Snowpacks (MEMLS) to quantify the influence of the atmospheric downward radiance in snow observation by using 90 GHz of the ground-based radiometer. The results show that, in Sodankyla of Finland, atmospheric contribution to ground-based radiometer at 90GHz 50-degree is up to 95.76K (H-pol) and 95.02K (V-pol), with an average of 25.36K (V-pol) and 25.95K (H-pol). The further calculated root mean square errors (RMSEs) of simulated TB with Tdown and observed TB are 41.40K (V-pol)/36.85(H-pol), and of simulated TB without Tdown are 41.25K (V-pol) and 36.72K (H-pol), respectively, the MEMLS slightly increased the simulation accuracy quantitatively of the snow emission without the influence of the atmosphere.
引用
收藏
页码:7719 / 7722
页数:4
相关论文
共 50 条
  • [11] Analysis of Atmospheric Refractive Index Error Based on Ground-based Radiometer Microwave Transmission Mode
    Wu, Peng
    Xing, Kairui
    Wu, Changzhe
    2024 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY, ICMMT, 2024,
  • [12] An analysis of ground-based polarimetric sky radiance measurements
    Cairns, B
    Carlson, BE
    Lacis, AA
    Russell, EE
    POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING, 1997, 3121 : 382 - 393
  • [13] Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer, SWARA
    Ka, Soohyun
    de Wachter, Evelyn
    Kaempfer, Niklaus
    Oh, Jung Jin
    REMOTE SENSING OF THE ATMOSPHERE AND CLOUDS III, 2010, 7859
  • [14] MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS
    Errard, J.
    Ade, P. A. R.
    Akiba, Y.
    Arnold, K.
    Atlas, M.
    Baccigalupi, C.
    Barron, D.
    Boettger, D.
    Borrill, J.
    Chapman, S.
    Chinone, Y.
    Cukierman, A.
    Delabrouille, J.
    Dobbs, M.
    Ducout, A.
    Elleflot, T.
    Fabbian, G.
    Feng, C.
    Feeney, S.
    Gilbert, A.
    Goeckner-Wald, N.
    Halverson, N. W.
    Hasegawa, M.
    Hattori, K.
    Hazumi, M.
    Hill, C.
    Holzapfel, W. L.
    Hori, Y.
    Inoue, Y.
    Jaehnig, G. C.
    Jaffe, A. H.
    Jeong, O.
    Katayama, N.
    Kaufman, J.
    Keating, B.
    Kermish, Z.
    Keskitalo, R.
    Kisner, T.
    Le Jeune, M.
    Lee, A. T.
    Leitch, E. M.
    Leon, D.
    Linder, E.
    Matsuda, F.
    Matsumura, T.
    Miller, N. J.
    Myers, M. J.
    Navaroli, M.
    Nishino, H.
    Okamura, T.
    ASTROPHYSICAL JOURNAL, 2015, 809 (01):
  • [15] GROUND-BASED ATMOSPHERIC INFRARED AND VISIBLE EMISSION MEASUREMENTS
    BAKER, DJ
    STEED, AJ
    WARE, GA
    OFFERMANN, D
    LANGE, G
    LAUCHE, H
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1985, 47 (1-3): : 133 - 145
  • [16] Aerosol Climatology over Japan Site Measured by Ground-based Sky Radiometer
    Aoki, Kazuma
    Takemura, Toshihiko
    Kawamoto, Kazuaki
    Hayasaka, Tadahiro
    RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012), 2013, 1531 : 284 - 287
  • [17] GROUND-BASED DETERMINATION OF ATMOSPHERIC RADIANCE FOR CORRECTION OF ERTS-1 DATA
    PEACOCK, K
    APPLIED OPTICS, 1974, 13 (12): : 2741 - 2742
  • [18] Microwave Radiometer for Cloud Carthography:: A 22-channel ground-based microwave radiometer for atmospheric research
    Crewell, S
    Czekala, H
    Löhnert, U
    Simmer, C
    Rose, T
    Zimmermann, R
    Zimmermann, R
    RADIO SCIENCE, 2001, 36 (04) : 621 - 638
  • [19] Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies
    Weidmann, D.
    Reburn, W. J.
    Smith, K. M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (07):
  • [20] Retrieval Analysis of Atmospheric Water Vapor for K-Band Ground-Based Hyperspectral Microwave Radiometer
    Liu, Dawei
    Lv, Changchun
    Liu, Kai
    Xie, Yan
    Miao, Jungang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) : 1835 - 1839