Wiener-Hopf Solution of Diffraction by a PEC Wedge in Anisotropic Media

被引:0
|
作者
Daniele, Vito [1 ]
Lombardi, Guido [1 ]
机构
[1] Politecn Torino, Turin, Italy
关键词
D O I
10.1109/ICEAA57318.2023.10297849
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we present our recent work on novel Wiener-Hopf (WH) formulation for the analysis and the study of scattering of wedges [1] immersed in complex materials [2-3]. We start from an original study of the perfect electrically conducting (PEC) wedge immersed in uniaxial (epsilon(x)=epsilon(y)not equal epsilon(z), mu(x)=mu(y)not equal mu(z)) and biaxial (all different epsilon(i), mu(i) i=x,y,z) media illuminated by plane waves, where the wedge has an aperture angle of 2 pi-2 gamma. The uniaxial case has been studied by Felsen in [4], however generalization and exploitation of this case has not been further carried out in literature.
引用
收藏
页码:652 / 652
页数:1
相关论文
共 50 条
  • [11] The Wiener-Hopf Formulation of the Penetrable Wedge Problem: Part I
    Daniele, V. G.
    ELECTROMAGNETICS, 2010, 30 (08) : 625 - 643
  • [12] The Wiener-Hopf method applied to dielectric angular regions: the wedge
    Daniele, V.
    Lombardi, G.
    ICEAA: 2009 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, VOLS 1 AND 2, 2009, : 489 - 492
  • [13] Wiener-Hopf Analysis of the Diffraction by a Finite Sinusoidal Grating
    Eizawa, T.
    Kobayashi, K.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 792 - 795
  • [14] Wiener-Hopf Analysis of the Diffraction by a Thin Material Strip
    Nagasaka, Takashi
    Kobayashi, Kazuya
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 557 - 560
  • [15] Wiener-Hopf factorization of a multiple plate diffraction problem
    Brannan, JR
    Duan, JQ
    Ervin, VJ
    Razoumov, L
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 765 - 770
  • [16] The Wiener-Hopf Formulation of the Penetrable Wedge Problem: Part II
    Daniele, V. G.
    ELECTROMAGNETICS, 2011, 31 (01) : 1 - 17
  • [17] A Wiener-Hopf approximation technique for a multiple plate diffraction
    Brannan, JR
    Ervin, VJ
    Duan, JQ
    Razoumov, L
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (01) : 19 - 34
  • [19] WIENER-HOPF EQUATION
    BRUNHES, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (22): : 1044 - &
  • [20] WIENER-HOPF FACTORIZATIONS
    MULLIKIN, TW
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1973, 3 (04): : 215 - 227