Mapping Slums in Mumbai, India, Using Sentinel-2 Imagery: Evaluating Composite Slum Spectral Indices (CSSIs)

被引:4
|
作者
Peng, Feifei [1 ,2 ]
Lu, Wei [3 ,4 ]
Hu, Yunfeng [3 ,4 ]
Jiang, Liangcun [5 ]
机构
[1] Cent China Normal Univ, Key Lab Geog Proc Anal & Simulat Hubei Prov, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan 430079, Peoples R China
[3] Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[5] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Sentinel-2; slum mapping; CSSIs; multispectral; urban; remote sensing; Mumbai; TEXTURE; HYDERABAD; ACCURACY; AREA;
D O I
10.3390/rs15194671
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate geographic data of slums are important for handling urban poverty issues. Previous slum mapping studies using high-resolution or very-high-resolution (HR/VHR) remotely sensed (RS) images are commonly not suitable for city-wide scale tasks. This study aims to efficiently generate a slum map on a city-wide scale using freely accessed multispectral medium-resolution (MR) Sentinel-2 images. Composite slum spectral indices (CSSIs) were initially proposed based on the shapes of spectral profiles of slums and nonslums and directly represent slum characteristics. Specifically, CSSI-1 denotes the normalized difference between the shortwave infrared bands and the red edge band, while CSSI-2 denotes the normalized difference between the blue band and the green band. Furthermore, two methods were developed to test the effectiveness of CSSIs on slum mapping, i.e., the threshold-based method and the machine learning (ML)-based method. Experimental results show that the threshold-based method and the ML-based method achieve intersection over unions (IoU) of 43.89% and 54.45% in Mumbai, respectively. The accuracies of our methods are comparable to or even higher than the accuracies reported by existing methods using HR/VHR images and transfer learning. The threshold-based method exhibits a promising performance in mapping slums larger than 5 ha, while the ML-based method refines mapping accuracies for slum pockets smaller than 5 ha. The threshold-based method and the ML-based method produced the slum map in Mumbai in 2 and 28 min, respectively. Our methods are suitable for rapid large-area slum mapping owing to the high data availability of Sentinel-2 images and high computational efficiency.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Trees outside forest in Italian agroforestry landscapes: detection and mapping using sentinel-2 imagery
    Sarti, Maurizio
    Ciolfi, Marco
    Lauteri, Marco
    Paris, Pierluigi
    Chiocchini, Francesca
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 609 - 623
  • [42] Digital soil mapping using Sentinel-2 imagery supported by ASTER thermal infrared bands
    Karyotis, Konstantinos
    Tziolas, Nikolaos
    Tsakiridis, Nikolaos
    Samarinas, Nikiforos
    Chatzimisios, Periklis
    Dematte, Jose Alexandre M.
    Zalidis, George
    EIGHTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2020), 2020, 11524
  • [43] Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery
    Mateo-Perez, Vanesa
    Corral-Bobadilla, Marina
    Ortega-Fernandez, Francisco
    Vergara-Gonzalez, Eliseo P.
    REMOTE SENSING, 2020, 12 (13)
  • [44] Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery
    Bolyn, Corentin
    Michez, Adrien
    Gaucher, Peter
    Lejeune, Philippe
    Bonnet, Stephanie
    BIOTECHNOLOGIE AGRONOMIE SOCIETE ET ENVIRONNEMENT, 2018, 22 (03): : 172 - 187
  • [45] Mountain Tree Species Mapping Using Sentinel-2, PlanetScope, and Airborne HySpex Hyperspectral Imagery
    Kluczek, Marcin
    Zagajewski, Bogdan
    Zwijacz-Kozica, Tomasz
    REMOTE SENSING, 2023, 15 (03)
  • [46] Reclaimed Area Land Cover Mapping Using Sentinel-2 Imagery and LiDAR Point Clouds
    Szostak, Marta
    Pietrzykowski, Marcin
    Likus-Cieslik, Justyna
    REMOTE SENSING, 2020, 12 (02)
  • [47] Image Classification and Land Cover Mapping Using Sentinel-2 Imagery: Optimization of SVM Parameters
    Yousefi, Saleh
    Mirzaee, Somayeh
    Almohamad, Hussein
    Al Dughairi, Ahmed Abdullah
    Gomez, Christopher
    Siamian, Narges
    Alrasheedi, Mona
    Abdo, Hazem Ghassan
    LAND, 2022, 11 (07)
  • [48] Mapping plant nitrogen concentration within Luvuvhu River Catchment using Sentinel-2 imagery
    Tshishonga, Unarine E.
    Malahlela, Oupa E.
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2025, 13
  • [49] Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms
    Prins, Adriaan Jacobus
    Van Niekerk, Adriaan
    GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (02) : 215 - 227
  • [50] Improving National Forest Mapping in Romania Using Machine Learning and Sentinel-2 Multispectral Imagery
    Keskes, Mohamed Islam
    Mohamed, Aya Hamed
    Borz, Stelian Alexandru
    Nita, Mihai Daniel
    REMOTE SENSING, 2025, 17 (04)