A Clustering-Based Data Reduction for the Large Automotive Datasets

被引:0
|
作者
Siwek, Patryk [1 ]
Skruch, Pawel [2 ]
Dlugosz, Marek [2 ]
机构
[1] Aptiv Serv Poland SA, Krakow, Poland
[2] AGH Univ Sci & Technol, Krakow, Poland
关键词
large dataset; automotive; reduction; clustering; perception;
D O I
10.1109/MMAR58394.2023.10242489
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large datasets used in automotive consist of a set of recorded sequences that represent possible road scenarios. Such scenarios are mainly utilized as test scenarios to verify developed driver assistance systems. Another application of the dataset is the training and verification of machine learning-based algorithms. As the number of possible road scenarios is, in fact, infinite, the process of selecting representative and meaningful sequences is a difficult and challenging task. This article presents an approach based on various clustering techniques for data reduction for large datasets that are used in the automotive industry to evaluate environmental perception algorithms. The approach is supported by the results obtained on representative datasets.
引用
收藏
页码:234 / 239
页数:6
相关论文
共 50 条
  • [21] Effective data summarization for hierarchical clustering in large datasets
    Patra, Bidyut Kr.
    Nandi, Sukumar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 42 (01) : 1 - 20
  • [22] A Framework for Data Clustering of Large Datasets in a Distributed Environment
    Swapna, Ch. Swetha
    Kumar, V. Vijaya
    Murthy, J. V. R.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 425 - 441
  • [23] Effective data summarization for hierarchical clustering in large datasets
    Bidyut Kr. Patra
    Sukumar Nandi
    Knowledge and Information Systems, 2015, 42 : 1 - 20
  • [24] LQG Control of Large Networks: A Clustering-Based Approach
    Xue, Nan
    Chakrabortty, Aranya
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 2333 - 2338
  • [25] A Genetics Clustering-based Approach for Weblog Data Cleaning
    Ganibardi, Amine
    Ali, Cherif Arab
    2018 SIXTH INTERNATIONAL CONFERENCE ON ENTERPRISE SYSTEMS (ES 2018), 2018, : 75 - 81
  • [26] Graph clustering-based discretization approach to microarray data
    Kittakorn Sriwanna
    Tossapon Boongoen
    Natthakan Iam-On
    Knowledge and Information Systems, 2019, 60 : 879 - 906
  • [27] Clustering-based visualizations for diagnosing diseases on metagenomic data
    Nguyen, Hai Thanh
    Phan, Trang Huyen
    Pham, Linh Thuy Thi
    Pham, Ngoc Huynh
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 5685 - 5699
  • [28] Gaussian Mixture Model Clustering-Based Knock Threshold Learning in Automotive Engines
    Shen, Xun
    Zhang, Yahui
    Sata, Kota
    Shen, Tielong
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (06) : 2981 - 2991
  • [29] EFFICIENT TRAINING DATA GENERATION BY CLUSTERING-BASED CLASSIFICATION
    Boege, Melanie
    Bulatov, Dimitri
    Debroize, Denis
    Haeufel, Gisela
    Lucks, Lukas
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 179 - 186
  • [30] Clustering-based incremental learning for imbalanced data classification
    Liu, Yuxin
    Du, Guangyu
    Yin, Chenke
    Zhang, Haichao
    Wang, Jia
    KNOWLEDGE-BASED SYSTEMS, 2024, 292