Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete

被引:3
|
作者
Mosleh, Youssef A. [1 ]
Gharieb, Mahmoud [2 ]
Rashad, Alaa M. [1 ,3 ]
机构
[1] Housing & Bldg Natl Res Ctr HBRC, Bldg Mat & Qual Control Res Inst, Cairo, Egypt
[2] Housing & Bldg Natl Res Ctr HBRC, Raw Bldg Mat & Technol Proc Res Inst, Cairo, Egypt
[3] Shaqra Univ, Coll Engn, Civil Engn Dept, Riyadh, Saudi Arabia
关键词
alkali-activated slag; fly ash concrete; hardened properties; microstructure; sodium hexametaphosphate (SHMP); sodium tripolyphos-phate (STPP); workability; ADDING SODIUM HEXAMETAPHOSPHATE; CEMENTITIOUS MATERIALS; FLY-ASH; MECHANICAL-PROPERTIES; AUTOGENOUS SHRINKAGE; KAOLIN SUSPENSIONS; TRIPOLYPHOSPHATE; HYDRATION; PASTE; DURABILITY;
D O I
10.14359/51738460
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Polyphosphate materials such as sodium tripolyphosphate (STPP) and sodium hexametaphosphate (SHMP) are usually used as a dispersion agent for the ceramic industry, auxiliary materials in high-range water-reducing admixtures, and retarders in traditional cement systems. Until now, however, no comprehensive study has been performed on the effect of STPP or SHMP on the properties of alkali-activated materials (AAMs). Thus, in this paper, the effect of different concentrations (2 to 8 wt. %) of STPP and SHMP on the properties of alkali-activated slag/fly ash concrete was investi-gated. The variations in workability, compressive strength, water absorption, and total porosity with the incorporation of either STPP or SHMP at levels of 2, 4, 6, and 8%, by weight, were conducted. Modern techniques were employed to investigate the crystalline phases and microstructure morphologies. The primary results showed that both STPP and SHMP can increase workability. Each type of polyphosphate showed a positive effect on the compres-sive strength, but 4% was the optimum concentration. Both water absorption and total porosity were reduced with the incorporation of each type of polyphosphate, but 4% was the optimum. The incor-poration of a suitable concentration of each type of polyphosphate can enhance the dispersion and deagglomeration of the particles and refine the microstructure.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 50 条
  • [31] Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature
    Rodrigue, Alexandre
    Bissonnette, Benoit
    Duchesne, Josee
    Fournier, Benoit
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 15 - 23
  • [32] Effect of temperature on the fresh and hardened state properties of alkali-activated slag/fly ash mixtures
    Xiaodi Dai
    Serdar Aydin
    Mert Yücel Yardimci
    Yubo Sun
    Geert De Schutter
    Materials and Structures, 2023, 56
  • [33] Effect of temperature on the fresh and hardened state properties of alkali-activated slag/fly ash mixtures
    Dai, Xiaodi
    Aydin, Serdar
    Yardimci, Mert Yucel
    Sun, Yubo
    De Schutter, Geert
    MATERIALS AND STRUCTURES, 2023, 56 (05)
  • [34] Durability of alkali-activated fly ash-slag concrete- state of art
    Hamsashree
    Pandit, Poornachandra
    Prashanth, Shreelaxmi
    Katpady, Dhruva Narayana
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (06)
  • [35] PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH
    You, Duo
    Fang, Yonghao
    Zhu, Chenhui
    Gong, Yongfan
    Gu, Yamin
    CERAMICS-SILIKATY, 2016, 60 (01) : 63 - 67
  • [36] Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers
    Jang, J. G.
    Lee, N. K.
    Lee, H. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 50 : 169 - 176
  • [37] ALKALI-ACTIVATED FLY ASH CONCRETE (CONCRETE WITHOUT CEMENT)
    Mikoc, Miroslav
    Bjelobrk, Ivan
    Korajac, Josip
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2011, 18 (01): : 99 - 102
  • [38] Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag
    Ouyang, Xiaowei
    Ma, Yuwei
    Liu, Ziyang
    Liang, Jianjun
    Ye, Guang
    MINERALS, 2020, 10 (01)
  • [39] Investigations on Alkali-Activated Slag/Fly Ash Concrete with steel slag coarse aggregate for pavement structures
    Palankar, Nitendra
    Shankar, A. U. Ravi
    Mithun, B. M.
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2017, 18 (06) : 500 - 512
  • [40] Experimental Study On Alkali-activated Slag-Lithium Slag-Fly Ash Environmental Concrete
    Zhang, Lanfang
    Wang, Ruiyan
    APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 1237 - 1240