Risk evaluation of CO2 leakage through fracture zone in geological storage reservoir

被引:18
|
作者
Wang, Zhiqiang [1 ,2 ]
Li, Hangyu [1 ,2 ]
Liu, Shuyang [1 ,2 ]
Xu, Jianchun [1 ,2 ]
Liu, Junrong [1 ,2 ]
Wang, Xiaopu [1 ,2 ]
机构
[1] China Univ Petr East China, Sch Petr Engn, Dongying, Peoples R China
[2] China Univ Petr East China, Key Lab Unconvent Oil & Gas Dev, Dongying, Peoples R China
关键词
CCUS; Saline aquifer; Fracture zone; CO; 2; leakage; Dimensionless number; CAPROCK INTEGRITY; SEQUESTRATION; GAS; DISPLACEMENT; MULTIPHASE; SIMULATION; PRESSURE; FIELD; FLOW; FORM;
D O I
10.1016/j.fuel.2023.127896
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 storage in saline aquifers is an effective way to reduce the emission of CO2 into the atmosphere. The po-tential leakage problems are the main challenge for CO2 storage projects. However, the quantitative evaluation and analysis of the driving forces for the potential CO2 leakage problems are still lacking. In this paper, a stratified model embedded with a highly-permeable fracture zone was constructed to simulate CO2 leakage in the post-injection period. The acting forces and dimensionless numbers were systematically analyzed, and four stages were defined based on the leakage characteristics. Ultimately, a novel regression model was developed to predict the percentage of secure storage for CO2 at any dimensionless numbers. Results showed four distinct CO2 leakage stages: fast CO2 leakage stage (T1); decreasing CO2 leakage stage (T2); fast water sink stage (T3); and stable countercurrent flow stage (T4). Viscous force, gravity force, and capillary force were the dominant driving forces in turn in the first three stages. A stable countercurrent flow and CO2 leakage were maintained in the last period. In addition, the turning point of the flow pattern was delayed, and Gravity number (Gr) and Bond number (Bo) decreased obviously with the increase of initial pressure gradient. More importantly, most of the leaked CO2 was trapped in riskier forms (i.e. structural and residual trapping), and heavy acidification occurred in the shallow aquifer. The novel regression model showed that the percentage of secure storage could be enhanced by increasing Gr and/or decreasing the Ca. It is suggested that the pressure gradient at the end of injection should be optimized to store more CO2 and decrease the leakage risk simultaneously.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Risk Assessment of CO2 Geological Storage and the Calculation of Storage Capacity
    Qi Dasheng
    Su Kun
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 3170 - 3173
  • [22] Risk Assessment of CO2 Geological Storage and the Calculation of Storage Capacity
    Qi, D.
    Zhang, S.
    Su, K.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2010, 28 (10) : 979 - 986
  • [23] Potential CO2 leakage from geological storage sites: advances and challenges
    Mortezaei, Kimia
    Amirlatifi, Amin
    Ghazanfari, Ehsan
    Vahedifard, Farshid
    ENVIRONMENTAL GEOTECHNICS, 2021, 8 (01): : 3 - 27
  • [24] The differential migration of noble gases as leakage proxy in CO2 geological storage
    Giannesini, Sophie
    Prinzhofer, Alain
    Moreira, Manuel
    Magnier, Caroline
    Schneider, Frederic
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A433 - A433
  • [25] Diffusive leakage of Ebrine from aquifers during CO2 geological storage
    Dejam, Morteza
    Hassanzadeh, Hassan
    ADVANCES IN WATER RESOURCES, 2018, 111 : 36 - 57
  • [26] Quantification techniques for potential CO2 leakage from geological storage sites
    Korre, Anna
    Imrie, Claire E.
    May, Franz
    Beaubien, Stan E.
    Vandermeijer, Vincent
    Persoglia, Sergio
    Golmen, Lars
    Fabriol, Hubert
    Dixon, Tim
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 3413 - 3420
  • [27] A study of wellbore cement alteration controlled by CO2 leakage in a natural analogue for geological CO2 storage
    Hernandez-Rodriguez, Ana
    Montegrossi, Giordano
    Huet, Bruno
    Vaselli, Orlando
    Virgili, Giorgio
    APPLIED GEOCHEMISTRY, 2017, 86 : 13 - 25
  • [28] Quantifying the Risk of CO2 Leakage Through Wellbores
    Loizzo, M.
    Akemu, O. A. P.
    Jammes, L.
    Desroches, J.
    Lombardi, S.
    Annunziatellis, A.
    SPE DRILLING & COMPLETION, 2011, 26 (03) : 324 - 331
  • [29] Development of Risk Assessment Tool for CO2 Geological Storage
    Tanaka, Atsuko
    Sakamoto, Yasuhide
    Komai, Takeshi
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4178 - 4184
  • [30] GERICO: A database for CO2 geological storage risk management
    Le Guenan, Thomas
    Manceau, Jean-Charles
    Bouc, Olivier
    Rohmer, Jeremy
    Ledoux, Alexandra
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4124 - 4131