Analysis of nanofluid flow and heat transfer behavior of Li-ion battery

被引:10
|
作者
Sirikasemsuk, S. [1 ]
Naphon, N. [2 ]
Eiamsa-ard, S. [3 ]
Naphon, P. [4 ]
机构
[1] Rajamangala Univ Technol Suvarnabhumi, Fac Engn & Architecture, Dept Mech Engn, Phranakhon Si Ayutthaya 13000, Thailand
[2] Srinakharinwirot Univ, Fac Pharm, Dept Pharmaceut Chem, Nakhorn Nayok 26120, Thailand
[3] Mahanakorn Univ Technol, Fac Engn, Dept Mech Engn, Bangkok 10530, Thailand
[4] Srinakharinwirot Univ, Fac Engn, Dept Mech Engn, Thermo Fluid & Heat Transfer Enhancement Lab TFHT, Nakhorn Nayok 26120, Thailand
关键词
Energy storage; Battery pack; Thermal behavior; Nanofluid; PHASE-CHANGE MATERIALS; THERMAL MANAGEMENT-SYSTEM; COOLING STRATEGY; PERFORMANCE; DESIGN; MODULE; WATER; PACK; DISTRIBUTIONS; EFFICIENCY;
D O I
10.1016/j.ijheatmasstransfer.2023.124058
中图分类号
O414.1 [热力学];
学科分类号
摘要
The operating battery temperature significantly affects electric vehicle performance, reliability, and safety. Therefore, batteries need to keep within the operating temperature design. The 3D Eulerian model is applied to determine battery thermal behavior with five different flow directions of coolant throughout the battery pack jacket. The computational domain consists of sixty cylindrical Li-ion cells inserted into the cooling module socket with constant power input conditions. The predicted results are consistent with the experimental results, with an average error of 1.28%. Coolant-improved flow direction and thermophysical properties significantly affect the decreasing maximum operating temperature and temperature gradient across a cell. The highest temperatures of the battery module are 30.06 degrees C, 30.00 degrees C, 29.91 degrees C, 29.89 degrees C, and 29.49 degrees C for models II, IV, III, I, and V, respectively. In addition, for the maximum temperature gradient across a cell, models I, II, and III yield the highest value [0.42 degrees C], followed by models IV [0.40 degrees C] and model V [0.15 degrees C], respectively. The proposed battery nanofluid cooling pack can therefore optimize the thermal management system of the EV pack.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Li-ion battery pack and applications
    Mazzola, Michael S.
    Shahverdi, Masood
    Green Energy and Technology, 2015, 172 : 445 - 476
  • [42] The Li-Ion Rechargeable Battery: A Perspective
    Goodenough, John B.
    Park, Kyu-Sung
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) : 1167 - 1176
  • [43] Flow and heat transfer analysis of Williamson nanofluid
    S. Nadeem
    S. T. Hussain
    Applied Nanoscience, 2014, 4 : 1005 - 1012
  • [44] Flow and heat transfer analysis of Williamson nanofluid
    Nadeem, S.
    Hussain, S. T.
    APPLIED NANOSCIENCE, 2014, 4 (08) : 1005 - 1012
  • [45] Thermal performance of a novel confined flow Li-ion battery module
    Jilte, Ravindra D.
    Kumar, Ravinder
    Ma, Lin
    APPLIED THERMAL ENGINEERING, 2019, 146 : 1 - 11
  • [46] Durability of a Li-ion Battery Pack
    Vorel, P.
    Cervinka, D.
    Toman, M.
    Martis, J.
    19TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2018), 2018, 87 (01): : 247 - 252
  • [47] Reverse layered air flow for Li-ion battery thermal management
    Na, Xiaoyu
    Kang, Huifang
    Wang, Teng
    Wang, Yichun
    APPLIED THERMAL ENGINEERING, 2018, 143 : 257 - 262
  • [48] Thermal Structural Behavior of Electrodes in Li-Ion Battery Studied In Operando
    Baran, V.
    Dolotko, O.
    Muehlbauer, M. J.
    Senyshyn, A.
    Ehrenberg, H.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1975 - A1982
  • [49] Parametric Evaluation of Thermal Behavior for Different Li-Ion Battery Chemistries
    Buidin, Thomas Imre Cyrille
    Mariasiu, Florin
    BATTERIES-BASEL, 2022, 8 (12):
  • [50] Electrochemical noise of a Li-ion battery: measurement and spectral analysis
    Astafev, E. A.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (04) : 1145 - 1153