An Artificial Neural Network for Solar Energy Prediction and Control Using Jaya-SMC

被引:10
|
作者
Jlidi, Mokhtar [1 ]
Hamidi, Faical [1 ]
Barambones, Oscar [2 ]
Abbassi, Rabeh [3 ]
Jerbi, Houssem [4 ]
Aoun, Mohamed [1 ]
Karami-Mollaee, Ali [5 ]
机构
[1] Univ Gabes, Lab Modelisat Anal & Commande Syst, LR16ES22, Gabes, Tunisia
[2] Univ Basque Country, UPV, EHU, Automat Control & Syst Engn Dept, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Hail, Coll Engn, Dept Elect Engn, Hail 1234, Saudi Arabia
[4] Univ Hail, Coll Engn, Dept Ind Engn, Hail 1234, Saudi Arabia
[5] Hakim Sabzevari Univ, Fac Elect & Comp Engn, Sabzevar 9618676115, Iran
关键词
JAYA algorithm; forecasting; artificial neural networks; sliding mode control; PEMFC; MPPT; SEPIC chopper; POWER POINT TRACKING; ALGORITHM;
D O I
10.3390/electronics12030592
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, researchers have focused on improving the efficiency of photovoltaic systems, as they have an extremely low efficiency compared to fossil fuels. An obvious issue associated with photovoltaic systems (PVS) is the interruption of power generation caused by changes in solar radiation and temperature. As a means of improving the energy efficiency performance of such a system, it is necessary to predict the meteorological conditions that affect PV modules. As part of the proposed research, artificial neural networks (ANNs) will be used for the purpose of predicting the PV system's current and voltage by predicting the PV system's operating temperature and radiation, as well as using JAYA-SMC hybrid control in the search for the MPP and duty cycle single-ended primary-inductor converter (SEPIC) that supplies a DC motor. Data sets of size 60538 were used to predict temperature and solar radiation. The data set had been collected from the Department of Systems Engineering and Automation at the Vitoria School of Engineering of the University of the Basque Country. Analyses and numerical simulations showed that the technique was highly effective. In combination with JAYA-SMC hybrid control, the proposed method enabled an accurate estimation of maximum power and robustness with reasonable generality and accuracy (regression (R) = 0.971, mean squared error (MSE) = 0.003). Consequently, this study provides support for energy monitoring and control.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Prediction of Diabetes by using Artificial Neural Network
    Sapon, Muhammad Akmal
    Ismail, Khadijah
    Zainudin, Suehazlyn
    CIRCUITS, SYSTEM AND SIMULATION, 2011, 7 : 299 - 303
  • [22] ARTIFICIAL NEURAL NETWORK MODELS FOR BUILDING ENERGY PREDICTION
    Ahn, Ki Uhn
    Park, Cheol Soo
    2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 2708 - 2716
  • [23] Prediction of monthly mean daily global solar radiation using Artificial Neural Network
    V SIVAMADHAVI
    R SAMUEL SELVARAJ
    Journal of Earth System Science, 2012, 121 : 1501 - 1510
  • [24] Solar Power Prediction using Deduced Feature of Visibility Index and Artificial Neural Network
    Shubham
    Padmanabh, Kumar
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 97 - 102
  • [25] Exergetic Performance Prediction of a Roughened Solar Air Heater Using Artificial Neural Network
    Ghritlahre, Harish Kumar
    Prasad, Radha Krishna
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2018, 64 (03): : 195 - 206
  • [26] A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network
    Ghritlahre H.K.
    Chandrakar P.
    Ahmad A.
    Annals of Data Science, 2021, 8 (03) : 405 - 449
  • [27] Prediction of monthly mean daily global solar radiation using Artificial Neural Network
    Sivamadhavi, V.
    Selvaraj, R. Samuel
    JOURNAL OF EARTH SYSTEM SCIENCE, 2012, 121 (06): : 1501 - 1510
  • [28] Prediction and control of surface roughness in CNC lathe using artificial neural network
    Karayel, Durmus
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (07) : 3125 - 3137
  • [29] Prediction of Solar Radiation Using Artificial Neural Networks
    Faceira, Joao
    Afonso, Paulo
    Salgado, Paulo
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 397 - 406
  • [30] Network Traffic Anomaly Prediction Using Artificial Neural Network
    Ciptaningtyas, Hening Titi
    Fatichah, Chastine
    Sabila, Altea
    ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016, 2017, 1818