Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy

被引:4
|
作者
Cribari-Neto, Francisco [1 ]
Scher, Vinicius T. [1 ]
Bayer, Fabio M. [2 ,3 ]
机构
[1] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
[2] Univ Fed Santa Maria, Dept Estat, Santa Maria, RS, Brazil
[3] Univ Fed Santa Maria, ACESM, Santa Maria, RS, Brazil
关键词
KARMA model; Bootstrap; Forecasting; Information criterion; Model selection; Stored hydroelectric energy; TIME-SERIES; INFORMATION CRITERION; REGRESSION; ORDER; RATES;
D O I
10.1016/j.ijforecast.2021.09.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
We evaluate the accuracy of model selection and associated short-run forecasts using beta autoregressive moving average (,KARMA) models, which are tailored for modeling and forecasting time series that assume values in the standard unit interval, (0, 1), such as rates, proportions, and concentration indices. Different model selection strategies are considered, including one that uses data resampling. Simulation evidence on the fre-quency of correct model selection favors the bootstrap-based approach. Model selection based on information criteria outperforms that based on forecasting accuracy measures. A forecasting analysis of the proportion of stored hydroelectric energy in South Brazil is presented and discussed. The empirical evidence shows that model selection based on data resampling typically leads to more accurate out-of-sample forecasts. (c) 2021 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 50 条
  • [1] Forecasting the proportion of stored energy using the unit Burr XII quantile autoregressive moving average model
    Tatiane Fontana Ribeiro
    Fernando A. Peña-Ramírez
    Renata Rojas Guerra
    Airlane P. Alencar
    Gauss M. Cordeiro
    Computational and Applied Mathematics, 2024, 43
  • [2] Forecasting the proportion of stored energy using the unit Burr XII quantile autoregressive moving average model
    Ribeiro, Tatiane Fontana
    Pena-Ramirez, Fernando A.
    Guerra, Renata Rojas
    Alencar, Airlane P.
    Cordeiro, Gauss M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [3] FORECASTING INDONESIA MORTALITY RATE USING BETA AUTOREGRESSIVE MOVING AVERAGE MODEL
    Aththufail, Muhammad Faiz Amir
    Devila, Sindy
    Novkaniza, Fevi
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [4] Bayesian modeling and forecasting of vector autoregressive moving average processes
    Shaarawy, Samir M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (11) : 3795 - 3815
  • [5] Forecasting Indian infant mortality rate: An application of autoregressive integrated moving average model
    Mishra, Amit K.
    Sahanaa, Chandar
    Manikandan, Mani
    JOURNAL OF FAMILY AND COMMUNITY MEDICINE, 2019, 26 (02): : 123 - 126
  • [6] Prediction intervals in the beta autoregressive moving average model
    Palm, Bruna Gregory
    Bayer, Fabio M.
    Cintra, Renato J.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (08) : 3635 - 3656
  • [7] A Model of Oil Price Forecasting based on Autoregressive and Moving Average
    Mo, Zhou
    Tao, Han
    2016 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS), 2016, : 22 - 25
  • [8] Application of autoregressive moving average model for forecasting the number of monthly new outbreaks of Swine Pasteurellosis
    Luan, Peixian
    Li, Fangge
    Xiao, Jianhua
    Wang, Hongbin
    2012 2ND INTERNATIONAL CONFERENCE ON APPLIED ROBOTICS FOR THE POWER INDUSTRY (CARPI), 2012, : 859 - 861
  • [9] Beta autoregressive moving average models
    Andréa V. Rocha
    Francisco Cribari-Neto
    TEST, 2009, 18 : 529 - 545
  • [10] Beta autoregressive moving average models
    Rocha, Andrea V.
    Cribari-Neto, Francisco
    TEST, 2009, 18 (03) : 529 - 545