Forecasting the proportion of stored energy using the unit Burr XII quantile autoregressive moving average model

被引:1
|
作者
Ribeiro, Tatiane Fontana [1 ,3 ]
Pena-Ramirez, Fernando A. [2 ]
Guerra, Renata Rojas [3 ]
Alencar, Airlane P. [1 ]
Cordeiro, Gauss M. [4 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP, Brazil
[2] Univ Nacl Colombia, Dept Estadist, Bogota, Colombia
[3] Univ Fed Santa Maria, Dept Estat, Santa Maria, RS, Brazil
[4] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Burr XII distribution; Unit interval; beta ARMA; KARMA; Forecasting; Quantile regression model; REGRESSION;
D O I
10.1007/s40314-023-02513-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper defines the unit Burr XII autoregressive moving average (UBXII-ARMA) model for continuous random variables in the unit interval, where any quantile can be modeled by a dynamic structure including autoregressive and moving average terms, time-varying regressors, and a link function. Our main motivation is to analyze the time series of the proportion of stored hydroelectric energy in Southeast Brazil and even identify a crisis period with lower water levels. We consider the conditional maximum likelihood method for parameter estimation, obtain closed-form expressions for the conditional score function, and conduct simulation studies to evaluate the accuracy of the estimators and estimated coverage rates of the parameters' asymptotic confidence intervals. We discuss the goodness-of-fit assessment and forecasting for the new model. Our forecasts of the proportion of the stored energy outperformed those obtained from the Kumaraswamy autoregressive moving average and beta autoregressive moving average models. Furthermore, only the UBXII-ARMA detected a significant effect of lower water levels before 2002 and after 2013.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Forecasting the proportion of stored energy using the unit Burr XII quantile autoregressive moving average model
    Tatiane Fontana Ribeiro
    Fernando A. Peña-Ramírez
    Renata Rojas Guerra
    Airlane P. Alencar
    Gauss M. Cordeiro
    Computational and Applied Mathematics, 2024, 43
  • [2] Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy
    Cribari-Neto, Francisco
    Scher, Vinicius T.
    Bayer, Fabio M.
    INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) : 98 - 109
  • [3] A product quality forecasting using autoregressive moving average
    Bon, AT
    Hamid, NA
    Proceedings of the Second IASTED International Conference on Neural Networks and Computational Intelligence, 2004, : 43 - 47
  • [4] Wind speed forecasting using autoregressive moving average/generalized autoregressive conditional heteroscedasticity model
    Jiang, Wen
    Yan, Zheng
    Feng, Dong-Han
    Hu, Zhi
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2012, 22 (05): : 662 - 673
  • [5] FORECASTING COVID-19 USING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL
    Deepa, B.
    Jeenmarseline, K. S.
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2022, 12 : 108 - 114
  • [6] FORECASTING INDONESIA MORTALITY RATE USING BETA AUTOREGRESSIVE MOVING AVERAGE MODEL
    Aththufail, Muhammad Faiz Amir
    Devila, Sindy
    Novkaniza, Fevi
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [7] A Model of Oil Price Forecasting based on Autoregressive and Moving Average
    Mo, Zhou
    Tao, Han
    2016 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS), 2016, : 22 - 25
  • [8] A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting
    Arunraj, Nari Sivanandam
    Ahrens, Diane
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2015, 170 : 321 - 335
  • [9] Short-term Ocean Wave Forecasting Using an Autoregressive Moving Average Model
    Ge, Ming
    Kerrigan, Eric C.
    2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,
  • [10] Forecasting the influx of crime cases using seasonal autoregressive integrated moving average model
    Redoblo, Cristine, V
    Redoblo, Jose Leo G.
    Salmingo, Rene A.
    Padilla, Charwin M.
    Arroyo, Jan Carlo T.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2023, 10 (08): : 158 - 165