Deep learning models-based CT-scan image classification for automated screening of COVID-19

被引:48
|
作者
Gupta, Kapil [1 ]
Bajaj, Varun [1 ]
机构
[1] PDPM Indian Inst Informat Technol Design & Mfg, Elect & Commun Discipline, Jabalpur 482005, MP, India
关键词
COVID-19; Deep learning; CT-scan images; Transfer learning; HYPERTENSION; DISEASE;
D O I
10.1016/j.bspc.2022.104268
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
COVID-19 is the most transmissible disease, caused by the SARS-CoV-2 virus that severely infects the lungs and the upper respiratory tract of the human body. This virus badly affected the lives and wellness of millions of people worldwide and spread widely. Early diagnosis, timely treatment, and proper confinement of the infected patients are some possible ways to control the spreading of coronavirus. Computed tomography (CT) scanning has proven useful in diagnosing several respiratory lung problems, including COVID-19 infections. Automated detection of COVID-19 using chest CT-scan images may reduce the clinician's load and save the lives of thousands of people. This study proposes a robust framework for the automated screening of COVID-19 using chest CT-scan images and deep learning-based techniques. In this work, a publically accessible CT-scan image dataset (contains the 1252 COVID-19 and 1230 non-COVID chest CT images), two pre-trained deep learning models (DLMs) namely, MobileNetV2 and DarkNet19, and a newly-designed lightweight DLM, are utilized for the automated screening of COVID-19. A repeated ten-fold holdout validation method is utilized for the training, validation, and testing of DLMs. The highest classification accuracy of 98.91% is achieved using transfer-learned DarkNet19. The proposed framework is ready to be tested with more CT images. The simulation results with the publicly available COVID-19 CT scan image dataset are included to show the effectiveness of the presented study.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] ET-NET: an ensemble of transfer learning models for prediction of COVID-19 infection through chest CT-scan images
    Rohit Kundu
    Pawan Kumar Singh
    Massimiliano Ferrara
    Ali Ahmadian
    Ram Sarkar
    Multimedia Tools and Applications, 2022, 81 : 31 - 50
  • [42] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Shah, Vruddhi
    Keniya, Rinkal
    Shridharani, Akanksha
    Punjabi, Manav
    Shah, Jainam
    Mehendale, Ninad
    EMERGENCY RADIOLOGY, 2021, 28 (03) : 497 - 505
  • [43] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Vruddhi Shah
    Rinkal Keniya
    Akanksha Shridharani
    Manav Punjabi
    Jainam Shah
    Ninad Mehendale
    Emergency Radiology, 2021, 28 : 497 - 505
  • [44] Automated image classification of chest X-rays of COVID-19 using deep transfer learning
    Dilshad, Sara
    Singh, Nikhil
    Atif, M.
    Hanif, Atif
    Yaqub, Nafeesah
    Farooq, W. A.
    Ahmad, Hijaz
    Chu, Yu-ming
    Masood, Muhammad Tamoor
    RESULTS IN PHYSICS, 2021, 28
  • [45] A novel deep learning based method for COVID-19 detection from CT image
    JavadiMoghaddam, SeyyedMohammad
    Gholamalinejad, Hossain
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [46] Computer-Aided COVID-19 Screening from Chest CT-Scan using a Fuzzy Ensemble-based Technique
    Sahoo, Pranab
    Saha, Sriparna
    Mondal, Samrat
    Chowdhury, Sujit
    Gowda, Suraj
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [47] Diagnosing COVID-19 from CT Image of Lung Segmentation & Classification with Deep Learning Based on Convolutional Neural Networks
    Kumari, K. Sita
    Samal, Sarita
    Mishra, Ruby
    Madiraju, Gunashekhar
    Mahabob, M. Nazargi
    Shivappa, Anil Bangalore
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 127 (03) : 2483 - 2499
  • [48] Diagnosing COVID-19 from CT Image of Lung Segmentation & Classification with Deep Learning Based on Convolutional Neural Networks
    K. Sita Kumari
    Sarita Samal
    Ruby Mishra
    Gunashekhar Madiraju
    M. Nazargi Mahabob
    Anil Bangalore Shivappa
    Wireless Personal Communications, 2022, 127 (3) : 2483 - 2499
  • [49] Classification of Positive COVID-19 CT Scans Using Deep Learning
    Khan, Muhammad Attique
    Hussain, Nazar
    Majid, Abdul
    Alhaisoni, Majed
    Bukhari, Syed Ahmad Chan
    Kadry, Seifedine
    Nam, Yunyoung
    Zhang, Yu-Dong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 2923 - 2938
  • [50] Data Augmentation and CNN Classification For Automatic COVID-19 Diagnosis From CT-Scan Images On Small Dataset
    Tan, Weijun
    Guo, Hongwei
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1455 - 1460