Uncertain logistic and Box-Cox regression analysis with maximum likelihood estimation

被引:1
|
作者
Fang, Liang [1 ]
Hong, Yiping [2 ]
Zhou, Zaiying [3 ]
Chen, Wenhui [1 ]
机构
[1] Beijing Forestry Univ, Sch Econ & Management, Beijing 100083, Peoples R China
[2] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal, Saudi Arabia
[3] Tsinghua Univ, Ctr Stat Sci, Beijing, Peoples R China
关键词
Maximum likelihood estimation; uncertain logistic model; uncertain Box-Cox regression model; prediction confidence interval; cross-validation;
D O I
10.1080/03610926.2021.1908562
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Although the maximum likelihood estimation (MLE) for the uncertain discrete models has long been an academic interest, it has yet to be proposed in the literature. Thus, this study proposes the uncertain MLE for discrete models in the framework of the uncertainty theory, such as the uncertain logistic regression model. We also generalize the estimation proposed by Lio and Liu and obtain the uncertain MLE for non-linear continuous models, such as the uncertain Box-Cox regression model. Our proposed methods provide a useful tool for making inferences regarding non-linear data that is precisely or imprecisely observed, especially data based on degrees of belief, such as an expert's experimental data. We demonstrate our methodology by calculating proposed estimates and providing forecast values and confidence intervals for numerical examples. Moreover, we evaluate our proposed models via residual analysis and the cross-validation method. The study enriches the definition of the uncertain MLE, thus making it easy to construct estimation and prediction methods for general uncertainty models.
引用
下载
收藏
页码:19 / 38
页数:20
相关论文
共 50 条
  • [31] Maximum likelihood estimation and parameter interpretation in elliptical mixed logistic regression
    Cristiano C. Santos
    Rosangela H. Loschi
    TEST, 2017, 26 : 209 - 230
  • [32] Maximum likelihood estimation and parameter interpretation in elliptical mixed logistic regression
    Santos, Cristiano C.
    Loschi, Rosangela H.
    TEST, 2017, 26 (01) : 209 - 230
  • [33] PENALIZED MAXIMUM-LIKELIHOOD ESTIMATION IN LOGISTIC-REGRESSION AND DISCRIMINATION
    ANDERSON, JA
    BLAIR, V
    BIOMETRIKA, 1982, 69 (01) : 123 - 136
  • [34] ESTIMATION OF NONPARAMETRIC ORDINAL LOGISTIC REGRESSION MODEL USING LOCAL MAXIMUM LIKELIHOOD ESTIMATION
    Rifada, Marisa
    Chamidah, Nur
    Ratnasari, Vita
    Purhadi
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
  • [35] On the parameter estimation of Box-Cox transformation cure model
    Pal, Suvra
    Roy, Souvik
    STATISTICS IN MEDICINE, 2023, 42 (15) : 2600 - 2618
  • [36] BOX-COX ESTIMATION OF INTERNATIONAL TOURISM DEMAND FOR NICARAGUA
    Vanegas, Manuel, Sr.
    TOURISM ANALYSIS, 2010, 15 (04): : 447 - 459
  • [37] Local influence in Box-Cox transformation for multivariate regression data
    Kim, MG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (12) : 2955 - 2969
  • [38] PyKernelLogit: Penalised maximum likelihood estimation of Kernel Logistic Regression in Python']Python
    Martin-Baos, Jose angel
    Garcia-Rodenas, Ricardo
    Garcia, Maria Luz Lopez
    Rodriguez-Benitez, Luis
    SOFTWARE IMPACTS, 2024, 19
  • [39] Maximum likelihood estimation for contingency tables and logistic regression with incorrectly linked data
    Chipperfield, James O.
    Bishop, Glenys R.
    Campbell, Paul
    SURVEY METHODOLOGY, 2011, 37 (01) : 13 - 24
  • [40] COMPUTER-PROGRAM FOR STEPWISE LOGISTIC REGRESSION USING MAXIMUM LIKELIHOOD ESTIMATION
    HOSMER, DW
    WANG, CY
    LIN, IC
    LEMESHOW, S
    COMPUTER PROGRAMS IN BIOMEDICINE, 1978, 8 (02): : 121 - 134