Layer-Specific Knowledge Distillation for Class Incremental Semantic Segmentation

被引:3
|
作者
Wang, Qilong [1 ]
Wu, Yiwen [1 ]
Yang, Liu [1 ]
Zuo, Wangmeng [2 ]
Hu, Qinghua [1 ,3 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[3] Minist Educ Peoples Republ China, Engn Res Ctr City Intelligence & Digital Governanc, Beijing 100816, Peoples R China
关键词
Knowledge distillation; incremental learning; semantic segmentation;
D O I
10.1109/TIP.2024.3372448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, class incremental semantic segmentation (CISS) towards the practical open-world setting has attracted increasing research interest, which is mainly challenged by the well-known issue of catastrophic forgetting. Particularly, knowledge distillation (KD) techniques have been widely studied to alleviate catastrophic forgetting. Despite the promising performance, existing KD-based methods generally use the same distillation schemes for different intermediate layers to transfer old knowledge, while employing manually tuned and fixed trade-off weights to control the effect of KD. These KD-based methods take no consideration of feature characteristics from different intermediate layers, limiting the effectiveness of KD for CISS. In this paper, we propose a layer-specific knowledge distillation (LSKD) method to assign appropriate knowledge schemes and weights for various intermediate layers by considering feature characteristics, aiming to further explore the potential of KD in improving the performance of CISS. Specifically, we present a mask-guided distillation (MD) to alleviate the background shift on semantic features, which performs distillation by masking the features affected by the background. Furthermore, a mask-guided context distillation (MCD) is presented to explore global context information lying in high-level semantic features. Based on them, our LSKD assigns different distillation schemes according to feature characteristics. To adjust the effect of layer-specific distillation adaptively, LSKD introduces a regularized gradient equilibrium method to learn dynamic trade-off weights. Additionally, our LSKD makes an attempt to simultaneously learn distillation schemes and trade-off weights of different layers by developing a bi-level optimization method. Extensive experiments on widely used Pascal VOC 12 and ADE20K show our LSKD clearly outperforms its counterparts while achieving state-of-the-art results.
引用
收藏
页码:1977 / 1989
页数:13
相关论文
共 50 条
  • [31] Robust Semantic Segmentation With Multi-Teacher Knowledge Distillation
    Amirkhani, Abdollah
    Khosravian, Amir
    Masih-Tehrani, Masoud
    Kashiani, Hossein
    IEEE ACCESS, 2021, 9 : 119049 - 119066
  • [32] Multi-view knowledge distillation for efficient semantic segmentation
    Chen Wang
    Jiang Zhong
    Qizhu Dai
    Yafei Qi
    Fengyuan Shi
    Bin Fang
    Xue Li
    Journal of Real-Time Image Processing, 2023, 20
  • [33] Causes of Catastrophic Forgetting in Class-Incremental Semantic Segmentation
    Kalb, Tobias
    Beyerer, Juergen
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 361 - 377
  • [34] Cross-Image Relational Knowledge Distillation for Semantic Segmentation
    Yang, Chuanguang
    Zhou, Helong
    An, Zhulin
    Jiang, Xue
    Xu, Yongjun
    Zhang, Qian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12309 - 12318
  • [35] Inter-image Discrepancy Knowledge Distillation for Semantic Segmentation
    Chen, Kaijie
    Gou, Jianping
    Li, Lin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 273 - 284
  • [36] Semi-supervised Semantic Segmentation with Mutual Knowledge Distillation
    Yuan, Jianlong
    Ge, Jinchao
    Wang, Zhibin
    Liu, Yifan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5436 - 5444
  • [37] Channel-spatial knowledge distillation for efficient semantic segmentation
    Karine, Ayoub
    Napoleon, Thibault
    Jridi, Maher
    PATTERN RECOGNITION LETTERS, 2024, 180 : 48 - 54
  • [38] Point-to-Voxel Knowledge Distillation for LiDAR Semantic Segmentation
    Hou, Yuenan
    Zhu, Xinge
    Ma, Yuexin
    Loy, Chen Change
    Li, Yikang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8469 - 8478
  • [39] FCKDNet: A Feature Condensation Knowledge Distillation Network for Semantic Segmentation
    Yuan, Wenhao
    Lu, Xiaoyan
    Zhang, Rongfen
    Liu, Yuhong
    ENTROPY, 2023, 25 (01)
  • [40] Knowledge Distillation for Efficient Panoptic Semantic Segmentation: applied to agriculture
    Li, Maohui
    Hasltead, Michael
    McCool, Chris
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 4204 - 4211