Phase engineering of Ni-Mn binary layered oxide cathodes for sodium-ion batteries

被引:12
|
作者
Hong, Feifei [1 ]
Zhou, Xin [2 ]
Liu, Xiaohong [1 ]
Feng, Guilin [3 ,4 ]
Zhang, Heng [5 ]
Fan, Weifeng [6 ]
Zhang, Bin [6 ]
Zuo, Meihua [6 ]
Xing, Wangyan [6 ]
Zhang, Ping [6 ]
Yan, Hua [7 ]
Xiang, Wei [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[2] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Hokkaido Univ, Res Inst Elect Sci RIES, N20W10, Sapporo, Hokkaido 0010020, Japan
[4] Hokkaido Univ, Grad Sch Informat Sci & Technol, Div Informat Sci & Technol, N20W10, Sapporo, Hokkaido 0010020, Japan
[5] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215009, Jiangsu, Peoples R China
[6] Yibin Libode New Mat Co Ltd, Yibin 644200, Sichuan, Peoples R China
[7] Cent South Univ, Engn Res Ctr, Sch Met & Environm, Minist Educ Adv Battery Mat, Changsha 410083, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Phase engineering; Ni-Mn layered oxide; Cathode; Sodium-ion batteries; HIGH-PERFORMANCE;
D O I
10.1016/j.jechem.2024.01.025
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries, but their electrochemical properties are highly related to compositional diversity. Diverse composite materials with various phase structures of P3, P2/P3, P2, P2/O3, and P2/ P3/O3 were synthesized by manipulating the sodium content and calcination conditions, leading to the construction of a synthetic phase diagram for NaxNi0.25Mn0.75O2 (0.45 <= x <= 1.1). Then, we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2, P2/P3, P2/O3, and P2/P3/O3-NaxNi0.25Mn0.75O2. Among them, P2/P3-Na0.75Ni0.25Mn0.75O2 exhibits the best rate capability of 90.9 mA h g at 5 C, with an initial discharge capacity of 142.62 mA h g-1 at 0.1 C and a capacity retention rate of 78.25% after 100 cycles at 1 C in the voltage range of 2-4.3 V. The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na' transfer dynamic, reduction of the Jahn-teller effect, and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases. The systematic research and exploration of phases in NaxNi0.25Mn0.75O2 provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
  • [21] Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries
    Zuo, Wenhua
    Liu, Xiangsi
    Qiu, Jimin
    Zhang, Dexin
    Xiao, Zhumei
    Xie, Jisheng
    Ren, Fucheng
    Wang, Jinming
    Li, Yixiao
    Ortiz, Gregorio F.
    Wen, Wen
    Wu, Shunqing
    Wang, Ming-Sheng
    Fu, Riqiang
    Yang, Yong
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [22] Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition
    Liu, Yi-Feng
    Han, Kai
    Peng, Dan-Ni
    Kong, Ling-Yi
    Su, Yu
    Li, Hong-Wei
    Hu, Hai-Yan
    Li, Jia-Yang
    Wang, Hong-Rui
    Fu, Zhi-Qiang
    Ma, Qiang
    Zhu, Yan-Fang
    Tang, Rui-Ren
    Chou, Shu-Lei
    Xiao, Yao
    Wu, Xiong-Wei
    INFOMAT, 2023, 5 (06)
  • [23] High-energy Mn-based layered cathodes for sodium-ion batteries
    Guo, Shaohua
    Zhou, Haoshen
    SCIENCE BULLETIN, 2019, 64 (03) : 149 - 150
  • [24] High-energy Mn-based layered cathodes for sodium-ion batteries
    Shaohua Guo
    Haoshen Zhou
    Science Bulletin, 2019, 64 (03) : 149 - 150
  • [25] Scientific challenges faced by Mn-based layered oxide cathodes with anionic redox for sodium-ion batteries
    Zheng, Chao
    He, Shengnan
    Gan, Jiantuo
    Wu, Zhijun
    She, Liaona
    Gao, Yong
    Yang, YaXiong
    Lou, Jiatao
    Ju, Zhijin
    Pan, Hongge
    CARBON ENERGY, 2024,
  • [26] Unraveling the Role of Li and Mg Substitution in Layered Sodium Oxide Cathodes for Sodium-Ion Batteries
    Wang, Jing-Song
    Shen, Ming-Yuan
    Li, Wen-Cui
    Wu, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (33) : 43548 - 43555
  • [27] Industrialization of Layered Oxide Cathodes for Lithium-Ion and Sodium-Ion Batteries: A Comparative Perspective
    Darga, Joe
    Lamb, Julia
    Manthiram, Arumugam
    ENERGY TECHNOLOGY, 2020, 8 (12)
  • [28] Current issues and corresponding optimizing strategies of layered oxide cathodes for sodium-ion batteries
    Tan, Xiang
    Zeng, Jun
    Sun, Luyi
    Peng, Chenxi
    Li, Zheng
    Zou, Shuhao
    Shi, Qian
    Wang, Hui
    Liu, Jun
    INFOMAT, 2025,
  • [29] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Jin, Junteng
    Liu, Yongchang
    Pang, Xuelu
    Wang, Yao
    Xing, Xianran
    Chen, Jun
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (03) : 385 - 402
  • [30] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Junteng Jin
    Yongchang Liu
    Xuelu Pang
    Yao Wang
    Xianran Xing
    Jun Chen
    Science China Chemistry, 2021, 64 : 385 - 402