共 50 条
Evaluating the Detection of Oceanic Mesoscale Eddies in an Operational Eddy-Resolving Global Forecasting System
被引:0
|作者:
Mo, Huier
[1
,2
]
Qin, Yinghao
[1
,2
]
Wan, Liying
[1
,2
]
Zhang, Yu
[1
,2
]
Huang, Xing
[3
]
Wang, Yi
[1
,2
]
Xing, Jianyong
[4
]
Yu, Qinglong
[1
,2
]
Wu, Xiangyu
[1
,2
]
机构:
[1] Natl Marine Environm Forecasting Ctr NMEFC, Beijing 100081, Peoples R China
[2] Natl Marine Environm Forecasting Ctr NMEFC, Key Lab Marine Hazards Forecasting, Beijing 100081, Peoples R China
[3] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
[4] Minist Nat Resources, Beijing 100812, Peoples R China
关键词:
mesoscale eddies;
eddy resolving;
operational oceanography;
sea level anomaly;
anticyclones;
cyclones;
Kuroshio;
Gulf Stream;
analysis and forecasting system;
DATA ASSIMILATION SYSTEM;
SEA-ICE MODEL;
NORTH PACIFIC;
TRANSPORT;
VARIABILITY;
SENSITIVITY;
ALGORITHM;
ALTIMETRY;
WATERS;
HEAT;
D O I:
10.3390/jmse11122343
中图分类号:
U6 [水路运输];
P75 [海洋工程];
学科分类号:
0814 ;
081505 ;
0824 ;
082401 ;
摘要:
In this study, a global analysis and forecasting system at 1/12 degrees is built for operational oceanography at the National Marine Environmental Forecasting Center (NMEFC) by using the NEMO ocean model (NMEFC-NEMO). First, statistical analysis methods are designed to evaluate the performance of sea level anomaly (SLA) forecasting. The results indicate that the NMEFC-NEMO performs well in SLA forecasting when compared with the Mercator-PSY4, Mercator-PSY3, UK-FOAM, CONCEPTS-GIOPS and Bluelink-OceanMAPS forecasting systems. The respective root-mean-squared errors (RMSEs) of NMEFC-NEMO (Mercator PSY4) are 0.0654 m (0.0663 m) and 0.0797 m (0.0767 m) for the lead times of 1 and 7 days. The anomaly correlation coefficients between forecasting and observations exceed 0.8 for the NMEFC-NEMO and Mercator-PSY4 systems, suggesting that the accuracy of SLA predicted using NMEFC-NEMO is comparable to Mercator PSY4 and superior to other forecasting systems. Moreover, the global spatial distribution of oceanic eddies are effectively represented in NMEFC-NEMO when compared to that in the HYCOM reanalysis, and the detection rate reaches more than 90% relative to HYCOM reanalysis. Regarding the strong eddies in the Kuroshio region, the NMEFC-NEMO reproduces the characteristic for anticyclonic and cyclonic eddies merging and splitting alternatively. As for the detective eddies in the Gulf Stream, NMEFC-NEMO effectively represents the spatial distribution of mesoscale eddies from different seasons. The amplitude of oceanic eddies, including both cyclones and anticyclones, were much stronger on 1 July 2019 than 1 January 2019. Overall, NMEFC-NEMO has a superior performance in SLA forecasting and effectively represents the oceanic mesoscale eddies for operational oceanography.
引用
收藏
页数:12
相关论文