Observations of Magnetospheric Solar Wind Charge Exchange

被引:2
|
作者
Ringuette, R. [1 ,2 ]
Kuntz, K. D. [2 ,3 ]
Koutroumpa, D. [4 ]
Kaaret, P. [5 ,6 ]
LaRocca, D. [5 ]
Richardson, J. [5 ,7 ]
机构
[1] ADNET Syst Inc, 6720 B Rockledge Dr,Suite 504, Bethesda, MD 20817 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA
[4] Sorbonne Univ, LATMOS, IPSL, CNRS,UVSQ Paris Saclay, Guyancourt, France
[5] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA
[6] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[7] US Geol Survey, Earth Resources & Observat Sci Ctr, 47914 252nd St, Sioux Falls, SD 57198 USA
来源
ASTROPHYSICAL JOURNAL | 2023年 / 955卷 / 02期
关键词
X-RAY-EMISSION; HOT CIRCUMGALACTIC MEDIUM; CORONAL MASS EJECTION; COMPONENTS; DISCOVERY; HALOSAT; FLUX;
D O I
10.3847/1538-4357/acf3e2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of solar wind charge exchange (SWCX) emission is vital to both the X-ray astrophysics and heliophysics communities. SWCX emission contaminates all astrophysical observations in X-rays regardless of the direction. Ignoring this contribution to X-ray spectra can lead to erroneous conclusions regarding the astrophysical plasmas along the line of sight owing to the similar spectral distributions of SWCX and several common types of more distant astrophysical plasmas. Since its discovery, the literature has distinguished between diffuse SWCX emission resulting from solar wind-neutral interactions within Earth's magnetosphere, called magnetospheric SWCX, and similar interactions occurring more generally throughout the heliosphere, called heliospheric SWCX. Here we build on previous work validating a modeling method for the heliospheric SWCX contribution in X-ray spectra obtained with a medium-resolution CubeSat instrument named HaloSat at low ecliptic latitudes. We now apply this model to a specially designed set of extended observations with the same instrument and successfully separate the spectral contributions of the astrophysical background and the heliospheric SWCX from the remaining contributions. Specifically, we find significant excess emission for four observations in the O vii emission line not explained by other sources, possibly indicative of magnetospheric SWCX. We discuss these results in comparison with simulation results publicly available through the Community Coordinated Modeling Center. We also report an absorbed high-temperature component in 2 of the 12 fields of view analyzed.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On magnetospheric response to solar wind discontinuities
    Zong, Q-G.
    Zhang, Hui
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (01) : 1 - 4
  • [22] Mercury's Solar Wind Interaction as Characterized by Magnetospheric Plasma Mantle Observations With MESSENGER
    Jasinski, Jamie M.
    Slavin, James A.
    Raines, Jim M.
    DiBraccio, Gina A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (12) : 12153 - 12169
  • [23] Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations
    Tian, A. M.
    Shen, X. C.
    Shi, Q. Q.
    Tang, B. B.
    Nowada, M.
    Zong, Q. G.
    Fu, S. Y.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (11) : 10813 - 10830
  • [24] Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations
    Kepko, L
    Spence, HE
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A6)
  • [25] SWICS/Ulysses and MASS/Wind observations of solar wind sulfur charge states
    Cohen, CMS
    Galvin, AB
    Hamilton, DC
    Gloeckler, G
    Geiss, J
    Bochsler, P
    SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 281 - 284
  • [26] Solar wind charge exchange observed through the lunar exosphere
    Robertson, I. P.
    Sembay, S.
    Stubbs, T. J.
    Kuntz, K. D.
    Collier, M. R.
    Cravens, T. E.
    Snowden, S. L.
    Hills, H. K.
    Porter, F. S.
    Travnicek, P.
    Carter, J. A.
    Read, A. M.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [27] Charge exchange emission from solar wind helium ions
    Bodewits, D
    Hoekstra, R
    Seredyuk, B
    McCullough, RW
    Jones, GH
    Tielens, AGGM
    ASTROPHYSICAL JOURNAL, 2006, 642 (01): : 593 - 605
  • [28] CHARGE-EXCHANGE IN SOLAR-WIND COMETARY INTERACTIONS
    GOMBOSI, TI
    HORANYI, M
    KECSKEMETY, K
    CRAVENS, TE
    NAGY, AF
    ASTROPHYSICAL JOURNAL, 1983, 268 (02): : 889 - 898
  • [29] THE SOLAR WIND CHARGE-EXCHANGE PRODUCTION FACTOR FOR HYDROGEN
    Kuntz, K. D.
    Collado-Vega, Y. M.
    Collier, M. R.
    Connor, H. K.
    Cravens, T. E.
    Koutroumpa, D.
    Porter, F. S.
    Robertson, I. P.
    Sibeck, D. G.
    Snowden, S. L.
    Thomas, N. E.
    Walsh, B. M.
    ASTROPHYSICAL JOURNAL, 2015, 808 (02):
  • [30] On lunar exospheric column densities and solar wind access beyond the terminator from ROSAT soft X-ray observations of solar wind charge exchange
    Collier, Michael R.
    Snowden, S. L.
    Sarantos, M.
    Benna, M.
    Carter, J. A.
    Cravens, T. E.
    Farrell, W. M.
    Fatemi, S.
    Hills, H. Kent
    Hodges, R. R.
    Holmstrom, M.
    Kuntz, K. D.
    Porter, F. Scott
    Read, A.
    Robertson, I. P.
    Sembay, S. F.
    Sibeck, D. G.
    Stubbs, T. J.
    Travnicek, P.
    Walsh, B. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (07) : 1459 - 1478