Electron Injection via Modified Diffusive Shock Acceleration in High-Mach-number Collisionless Shocks

被引:0
|
作者
Grassi, A. [1 ,2 ]
Rinderknecht, H. G. [3 ]
Swadling, G. F. [4 ]
Higginson, D. P. [4 ]
Park, H. -s. [4 ]
Spitkovsky, A. [5 ]
Fiuza, F. [2 ,6 ]
机构
[1] Sorbonne Univ, Ecole Polytech, Inst Polytech Paris, LULI,CNRS,CEA, F-75255 Paris, France
[2] SLAC Natl Accelerator Lab, High Energy Dens Sci Div, Menlo Pk, CA 94025 USA
[3] Univ Rochester, Lab Laser Energet, Rochester, NY USA
[4] Lawrence Livermore Natl Lab, Livermore, CA USA
[5] Princeton Univ, Princeton, NJ USA
[6] Univ Lisbon, Inst Super Tecn, GoLP Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal
基金
欧洲研究理事会;
关键词
MAGNETIC-FIELD AMPLIFICATION; PARTICLE-ACCELERATION; PERPENDICULAR SHOCKS; ASTROPHYSICAL SHOCKS; DRIFT ACCELERATION; ACCRETION SHOCKS; STOCHASTIC SHOCK; COSMIC-RAYS; PLASMA; SIMULATIONS;
D O I
10.3847/2041-8213/ad0cf9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ability of collisionless shocks to efficiently accelerate nonthermal electrons via diffusive shock acceleration (DSA) is thought to require an injection mechanism capable of preaccelerating electrons to high enough energy where they can start crossing the shock front potential. We propose, and show via fully kinetic plasma simulations, that in high-Mach-number shocks electrons can be effectively injected by scattering in kinetic-scale magnetic turbulence produced near the shock transition by the ion Weibel, or current filamentation, instability. We describe this process as a modified DSA mechanism where initially thermal electrons experience the flow velocity gradient in the shock transition and are accelerated via a first-order Fermi process as they scatter back and forth. The electron energization rate, diffusion coefficient, and acceleration time obtained in the model are consistent with particle-in-cell simulations and with the results of recent laboratory experiments where nonthermal electron acceleration was observed. This injection model represents a natural extension of DSA and could account for electron injection in high-Mach-number astrophysical shocks, such as those associated with young supernova remnants and accretion shocks in galaxy clusters.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Diffusive shock acceleration of cosmic rays in low-Mach galaxy cluster shocks
    van Marle, Allard Jan
    16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), 2020, 1468
  • [32] Mach number dependence of electron heating in high Mach number quasiperpendicular shocks
    Matsukiyo, Shuichi
    PHYSICS OF PLASMAS, 2010, 17 (04)
  • [33] Kinetic Simulations of Nonrelativistic High-mach-number Perpendicular Shocks Propagating in a Turbulent Medium
    Fulat, Karol
    Bohdan, Artem
    Torralba Paz, Gabriel
    Pohl, Martin
    ASTROPHYSICAL JOURNAL, 2023, 959 (02):
  • [34] NON-THERMAL ELECTRON ACCELERATION IN LOW MACH NUMBER COLLISIONLESS SHOCKS. I. PARTICLE ENERGY SPECTRA AND ACCELERATION MECHANISM
    Guo, Xinyi
    Sironi, Lorenzo
    Narayan, Ramesh
    ASTROPHYSICAL JOURNAL, 2014, 794 (02):
  • [35] NON-THERMAL ELECTRON ACCELERATION IN LOW MACH NUMBER COLLISIONLESS SHOCKS.II. FIREHOSE-MEDIATED FERMI ACCELERATION AND ITS DEPENDENCE ON PRE-SHOCK CONDITIONS
    Guo, Xinyi
    Sironi, Lorenzo
    Narayan, Ramesh
    ASTROPHYSICAL JOURNAL, 2014, 797 (01):
  • [36] Strong electron acceleration at high Mach number shock waves: Simulation study of electron dynamics
    Shimada, N
    Hoshino, M
    ASTROPHYSICAL JOURNAL, 2000, 543 (01): : L67 - L71
  • [38] DIMENSIONALITY EFFECTS IN HYBRID SIMULATIONS OF HIGH MACH NUMBER COLLISIONLESS PERPENDICULAR SHOCKS
    THOMAS, VA
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A9): : 12009 - 12014
  • [39] In situ observations of high-Mach number collisionless shocks in space plasmas
    Masters, A.
    Stawarz, L.
    Fujimoto, M.
    Schwartz, S. J.
    Sergis, N.
    Thomsen, M. F.
    Retino, A.
    Hasegawa, H.
    Zieger, B.
    Lewis, G. R.
    Coates, A. J.
    Canu, P.
    Dougherty, M. K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
  • [40] High-Mach number, laser-driven magnetized collisionless shocks
    Schaeffer, D. B.
    Fox, W.
    Haberberger, D.
    Fiksel, G.
    Bhattacharjee, A.
    Barnak, D. H.
    Hu, S. X.
    Germaschewski, K.
    Follett, R. K.
    PHYSICS OF PLASMAS, 2017, 24 (12)