Electron Injection via Modified Diffusive Shock Acceleration in High-Mach-number Collisionless Shocks

被引:0
|
作者
Grassi, A. [1 ,2 ]
Rinderknecht, H. G. [3 ]
Swadling, G. F. [4 ]
Higginson, D. P. [4 ]
Park, H. -s. [4 ]
Spitkovsky, A. [5 ]
Fiuza, F. [2 ,6 ]
机构
[1] Sorbonne Univ, Ecole Polytech, Inst Polytech Paris, LULI,CNRS,CEA, F-75255 Paris, France
[2] SLAC Natl Accelerator Lab, High Energy Dens Sci Div, Menlo Pk, CA 94025 USA
[3] Univ Rochester, Lab Laser Energet, Rochester, NY USA
[4] Lawrence Livermore Natl Lab, Livermore, CA USA
[5] Princeton Univ, Princeton, NJ USA
[6] Univ Lisbon, Inst Super Tecn, GoLP Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal
基金
欧洲研究理事会;
关键词
MAGNETIC-FIELD AMPLIFICATION; PARTICLE-ACCELERATION; PERPENDICULAR SHOCKS; ASTROPHYSICAL SHOCKS; DRIFT ACCELERATION; ACCRETION SHOCKS; STOCHASTIC SHOCK; COSMIC-RAYS; PLASMA; SIMULATIONS;
D O I
10.3847/2041-8213/ad0cf9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ability of collisionless shocks to efficiently accelerate nonthermal electrons via diffusive shock acceleration (DSA) is thought to require an injection mechanism capable of preaccelerating electrons to high enough energy where they can start crossing the shock front potential. We propose, and show via fully kinetic plasma simulations, that in high-Mach-number shocks electrons can be effectively injected by scattering in kinetic-scale magnetic turbulence produced near the shock transition by the ion Weibel, or current filamentation, instability. We describe this process as a modified DSA mechanism where initially thermal electrons experience the flow velocity gradient in the shock transition and are accelerated via a first-order Fermi process as they scatter back and forth. The electron energization rate, diffusion coefficient, and acceleration time obtained in the model are consistent with particle-in-cell simulations and with the results of recent laboratory experiments where nonthermal electron acceleration was observed. This injection model represents a natural extension of DSA and could account for electron injection in high-Mach-number astrophysical shocks, such as those associated with young supernova remnants and accretion shocks in galaxy clusters.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Diffusive Shock Acceleration at Oblique High Mach Number Shocks
    van Marle, Allard Jan
    Bohdan, Artem
    Morris, Paul J.
    Pohl, Martin
    Marcowith, Alexandre
    ASTROPHYSICAL JOURNAL, 2022, 929 (01):
  • [2] Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks
    Bohdan, Artem
    Niemiec, Jacek
    Kobzar, Oleh
    Pohl, Martin
    ASTROPHYSICAL JOURNAL, 2017, 847 (01):
  • [3] A Critical Mach Number for Electron Injection in Collisionless Shocks
    Amano, Takanobu
    Hoshino, Masahiro
    PHYSICAL REVIEW LETTERS, 2010, 104 (18)
  • [4] The ramp widths of high-Mach-number, quasi-perpendicular collisionless shocks
    Newbury, JA
    Russell, CT
    Gedalin, M
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A12) : 29581 - 29593
  • [5] Electron Heating in High Mach Number Collisionless Shocks
    Vanthieghem, A.
    Tsiolis, V.
    Spitkovsky, A.
    Todo, Y.
    Sekiguchi, K.
    Fiuza, F.
    PHYSICAL REVIEW LETTERS, 2024, 132 (26)
  • [6] ELECTRON ACCELERATION AT A LOW MACH NUMBER PERPENDICULAR COLLISIONLESS SHOCK
    Umeda, Takayuki
    Yamao, Masahiro
    Yamazaki, Ryo
    ASTROPHYSICAL JOURNAL, 2009, 695 (01): : 574 - 579
  • [7] ION HEATING IN HIGH-MACH-NUMBER, OBLIQUE, COLLISIONLESS SHOCK-WAVES
    BISKAMP, D
    WELTER, H
    PHYSICAL REVIEW LETTERS, 1972, 28 (07) : 410 - &
  • [8] HIGH-MACH-NUMBER TURBULENT MAGNETOSONIC SHOCKS
    PAPADOPOULOS, K
    WAGNER, CE
    HABER, I
    PHYSICAL REVIEW LETTERS, 1971, 27 (15) : 982 - +
  • [9] Nonthermal electrons at high Mach number shocks: Electron shock surfing acceleration
    Hoshino, M
    Shimada, N
    ASTROPHYSICAL JOURNAL, 2002, 572 (02): : 880 - 887
  • [10] Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
    Schaeffer, D. B.
    Fox, W.
    Haberberger, D.
    Fiksel, G.
    Bhattacharjee, A.
    Barnak, D. H.
    Hu, S. X.
    Germaschewski, K.
    PHYSICAL REVIEW LETTERS, 2017, 119 (02)