The Maximal Length of q-ary MDS Elliptic Codes Is Close to q/2

被引:0
|
作者
Han, Dongchun [1 ]
Ren, Yuan [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
ARCS;
D O I
10.1093/imrn/rnad271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Determining the maximal length of MDS codes with certain dimension is one of the central topics in coding theory and finite geometry. The MDS Main Conjecture states that the maximal length of a nontrivial q-ary MDS code of dimension k is q + 1 except when q is even and k = 3 or k = q - 1. We prove that the maximal length of non-trivial q-ary MDS elliptic codes is close to q/2, which gives an affirmative answer to a conjecture of Li, Wan, and Zhang. Moreover, we apply our result to derive an answer to a question on subset sums in finite abelian groups from elliptic curves.
引用
收藏
页码:9036 / 9043
页数:8
相关论文
共 50 条
  • [31] Polar Codes for Q-ary Source Coding
    Karzand, Mohammad
    Telatar, Emre
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 909 - 912
  • [32] QAM modulations with q-ary turbo codes
    张豫伟
    王新梅
    Science in China(Series E:Technological Sciences), 1997, (01) : 64 - 70
  • [33] QAM modulations with q-ary turbo codes
    Zhang, YW
    Wang, XM
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1997, 40 (01): : 64 - 70
  • [34] Synchronizing codewords of q-ary Huffman codes
    Perkins, S
    Escott, AE
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 637 - 655
  • [35] LOWER BOUNDS FOR Q-ARY COVERING CODES
    CHEN, WD
    HONKALA, IS
    CHINESE SCIENCE BULLETIN, 1990, 35 (06): : 521 - 522
  • [36] Classification of q-Ary Perfect Quantum Codes
    Li, Zhuo
    Xing, Lijuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) : 631 - 634
  • [37] Construction of Efficient q-ary Balanced Codes
    Mambou, Elie N.
    Swart, Theo G.
    2019 IEEE AFRICON, 2019,
  • [38] Binary and q-ary Tardos codes, revisited
    Skoric, Boris
    Oosterwijk, Jan-Jaap
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (01) : 75 - 111
  • [39] A new class of nonlinear Q-ary codes
    S. A. Stepanov
    Problems of Information Transmission, 2006, 42 : 204 - 216
  • [40] Prefixless q-ary Balanced Codes with ECC
    Swart, Theo G.
    Immink, Kees A. S.
    2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,