De novo design of protein structure and function with RFdiffusion

被引:254
|
作者
Watson, Joseph L. [1 ,2 ]
Juergens, David [1 ,2 ,3 ]
Bennett, Nathaniel R. [1 ,2 ,3 ]
Trippe, Brian L. [2 ,4 ,5 ]
Yim, Jason [2 ,6 ]
Eisenach, Helen E. [1 ,2 ]
Ahern, Woody [1 ,2 ,7 ]
Borst, Andrew J. [1 ,2 ]
Ragotte, Robert J. [1 ,2 ]
Milles, Lukas F. [1 ,2 ]
Wicky, Basile I. M. [1 ,2 ]
Hanikel, Nikita [1 ,2 ]
Pellock, Samuel J. [1 ,2 ]
Courbet, Alexis [1 ,2 ,8 ]
Sheffler, William [1 ,2 ]
Wang, Jue [1 ,2 ]
Venkatesh, Preetham [1 ,2 ,9 ]
Sappington, Isaac [1 ,2 ,9 ]
Torres, Susana Vazquez [1 ,2 ,9 ]
Lauko, Anna [1 ,2 ,9 ]
De Bortoli, Valentin [8 ]
Mathieu, Emile [10 ]
Ovchinnikov, Sergey [11 ,12 ]
Barzilay, Regina [6 ]
Jaakkola, Tommi S. [6 ]
Dimaio, Frank [1 ,2 ]
Baek, Minkyung [13 ]
Baker, David [1 ,2 ,14 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[3] Univ Washington, Grad Program Mol Engn, Seattle, WA USA
[4] Columbia Univ, Dept Stat, New York, NY USA
[5] Columbia Univ, Irving Inst Canc Dynam, New York, NY USA
[6] MIT, Cambridge, MA USA
[7] Univ Washington, Paul G Allen Sch Comp Sci Engn, Seattle, WA USA
[8] Ecole Normale Super, Natl Ctr Sci Res, Rue Ulm, Paris, France
[9] Univ Washington, Grad Program Biol Phys Struct & Design, Seattle, WA USA
[10] Univ Cambridge, Dept Engn, Cambridge, England
[11] Harvard Univ, Fac Appl Sci, Cambridge, MA USA
[12] Harvard Univ, John Harvard Distinguished Sci Fellowship, Cambridge, MA USA
[13] Seoul Natl Univ, Sch Biol Sci, Seoul, South Korea
[14] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
基金
英国工程与自然科学研究理事会;
关键词
NEUTRALIZING ANTIBODY-RESPONSES; COMPUTATIONAL DESIGN; POTENT; PREDICTION; EVOLUTION; SYMMETRY; FOLD;
D O I
10.1038/s41586-023-06415-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. Fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks yields a generative model for protein design that achieves outstanding performance on a wide range of protein structure and function design challenges.
引用
收藏
页码:1089 / 1100
页数:38
相关论文
共 50 条
  • [1] De novo design of protein structure and function with RFdiffusion
    Joseph L. Watson
    David Juergens
    Nathaniel R. Bennett
    Brian L. Trippe
    Jason Yim
    Helen E. Eisenach
    Woody Ahern
    Andrew J. Borst
    Robert J. Ragotte
    Lukas F. Milles
    Basile I. M. Wicky
    Nikita Hanikel
    Samuel J. Pellock
    Alexis Courbet
    William Sheffler
    Jue Wang
    Preetham Venkatesh
    Isaac Sappington
    Susana Vázquez Torres
    Anna Lauko
    Valentin De Bortoli
    Emile Mathieu
    Sergey Ovchinnikov
    Regina Barzilay
    Tommi S. Jaakkola
    Frank DiMaio
    Minkyung Baek
    David Baker
    Nature, 2023, 620 : 1089 - 1100
  • [2] Sparks of function by de novo protein design
    Chu, Alexander E.
    Lu, Tianyu
    Huang, Po-Ssu
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 203 - 215
  • [3] Sparks of function by de novo protein design
    Alexander E. Chu
    Tianyu Lu
    Po-Ssu Huang
    Nature Biotechnology, 2024, 42 : 203 - 215
  • [4] De novo protein design targeting voltage-gated sodium channel 1.7 using RFdiffusion and AlphaFold2
    Harris, Brandon J.
    Sukhthankar, Amogh
    Yarov-Yarovoy, Vladimir
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 108A - 108A
  • [5] De novo design of protein function: Predictable structure-function relationships in synthetic redox proteins
    Mutz, MW
    Case, MA
    Wishart, JF
    Ghadiri, MR
    McLendon, GL
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (04) : 858 - 859
  • [6] Advances in protein structure prediction and de novo protein design:: A review
    Floudas, CA
    Fung, HK
    McAllister, SR
    Mönnigmann, M
    Rajgaria, R
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (03) : 966 - 988
  • [7] De novo protein design
    O'Driscoll, Cath
    CHEMISTRY & INDUSTRY, 2020, 84 (03) : 8 - 8
  • [8] De novo protein design
    Koehl, P
    Levitt, M
    DYNAMICS, STRUCTURE AND FUNCTION OF BIOLOGICAL MACROMOLECULES, 2001, 315 : 57 - 75
  • [9] De novo protein design
    Degrado, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [10] De novo protein design
    Degrado, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257