Sparks of function by de novo protein design

被引:5
|
作者
Chu, Alexander E. [1 ,2 ,3 ]
Lu, Tianyu [2 ]
Huang, Po-Ssu [1 ,2 ]
机构
[1] Stanford Univ, Program Biophys, Palo Alto, CA 94305 USA
[2] Stanford Univ, Dept Bioengn, Palo Alto, CA 94305 USA
[3] Google DeepMind, London, England
关键词
COMPUTATIONAL DESIGN; PREDICTION; SEQUENCE; PRINCIPLES; AGE;
D O I
10.1038/s41587-024-02133-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Information in proteins flows from sequence to structure to function, with each step causally driven by the preceding one. Protein design is founded on inverting this process: specify a desired function, design a structure executing this function, and find a sequence that folds into this structure. This 'central dogma' underlies nearly all de novo protein-design efforts. Our ability to accomplish these tasks depends on our understanding of protein folding and function and our ability to capture this understanding in computational methods. In recent years, deep learning-derived approaches for efficient and accurate structure modeling and enrichment of successful designs have enabled progression beyond the design of protein structures and towards the design of functional proteins. We examine these advances in the broader context of classical de novo protein design and consider implications for future challenges to come, including fundamental capabilities such as sequence and structure co-design and conformational control considering flexibility, and functional objectives such as antibody and enzyme design. Chu and colleagues discuss recent developments in de novo protein design.
引用
收藏
页码:203 / 215
页数:13
相关论文
共 50 条
  • [1] Sparks of function by de novo protein design
    Alexander E. Chu
    Tianyu Lu
    Po-Ssu Huang
    Nature Biotechnology, 2024, 42 : 203 - 215
  • [2] De novo design of protein structure and function with RFdiffusion
    Joseph L. Watson
    David Juergens
    Nathaniel R. Bennett
    Brian L. Trippe
    Jason Yim
    Helen E. Eisenach
    Woody Ahern
    Andrew J. Borst
    Robert J. Ragotte
    Lukas F. Milles
    Basile I. M. Wicky
    Nikita Hanikel
    Samuel J. Pellock
    Alexis Courbet
    William Sheffler
    Jue Wang
    Preetham Venkatesh
    Isaac Sappington
    Susana Vázquez Torres
    Anna Lauko
    Valentin De Bortoli
    Emile Mathieu
    Sergey Ovchinnikov
    Regina Barzilay
    Tommi S. Jaakkola
    Frank DiMaio
    Minkyung Baek
    David Baker
    Nature, 2023, 620 : 1089 - 1100
  • [3] De novo design of protein structure and function with RFdiffusion
    Watson, Joseph L.
    Juergens, David
    Bennett, Nathaniel R.
    Trippe, Brian L.
    Yim, Jason
    Eisenach, Helen E.
    Ahern, Woody
    Borst, Andrew J.
    Ragotte, Robert J.
    Milles, Lukas F.
    Wicky, Basile I. M.
    Hanikel, Nikita
    Pellock, Samuel J.
    Courbet, Alexis
    Sheffler, William
    Wang, Jue
    Venkatesh, Preetham
    Sappington, Isaac
    Torres, Susana Vazquez
    Lauko, Anna
    De Bortoli, Valentin
    Mathieu, Emile
    Ovchinnikov, Sergey
    Barzilay, Regina
    Jaakkola, Tommi S.
    Dimaio, Frank
    Baek, Minkyung
    Baker, David
    NATURE, 2023, 620 (7976) : 1089 - 1100
  • [4] De novo protein design
    O'Driscoll, Cath
    CHEMISTRY & INDUSTRY, 2020, 84 (03) : 8 - 8
  • [5] De novo protein design
    Koehl, P
    Levitt, M
    DYNAMICS, STRUCTURE AND FUNCTION OF BIOLOGICAL MACROMOLECULES, 2001, 315 : 57 - 75
  • [6] De novo protein design
    Degrado, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [7] De novo protein design
    Degrado, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [8] Protein de novo design
    Tuchscherer, G
    Dumy, P
    Mutter, M
    CHIMIA, 1996, 50 (12) : 644 - 648
  • [9] Graphormer supervised de novo protein design method and function validation
    Mu, Junxi
    Li, Zhengxin
    Zhang, Bo
    Zhang, Qi
    Iqbal, Jamshed
    Wadood, Abdul
    Wei, Ting
    Feng, Yan
    Chen, Hai-Feng
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [10] De novo protein design, a retrospective
    Korendovych, Ivan, V
    DeGrado, William F.
    QUARTERLY REVIEWS OF BIOPHYSICS, 2020, 53