THE SPECTRAL EIGENMATRIX PROBLEMS OF PLANAR SELF-AFFINE MEASURES WITH FOUR DIGITS

被引:1
|
作者
Liu, Jing-Cheng [1 ]
Tang, Min-Wei [1 ]
Wu, Sha [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha, Hunan, Peoples R China
[2] Hunan Univ, Sch Math, Changsha, Hunan, Peoples R China
关键词
self-affine measure; spectral measure; spectrum; spectral eigenmatrix; MU(M; D)-ORTHOGONAL EXPONENTIALS; FOURIER DUALITY; MOCK; CARDINALITY; WAVELETS; SERIES; TILES;
D O I
10.1017/S0013091523000469
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Borel probability measure mu on R-n and a real matrix R is an element of M-n(R). We call R a spectral eigenmatrix of the measure mu if there exists a countable set Lambda subset of R-n such that the sets E-Lambda = {e(2 pi i <lambda,x >) : lambda is an element of Lambda} and E-R Lambda = {e(2 pi i < R lambda, x >) : lambda is an element of Lambda} are both orthonormal bases for the Hilbert space L-2(mu). In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure mu(M,D) generated by an expanding integer matrix M is an element of M-2(2Z) and the four-elements digit set D = {(0, 0)(t), (1, 0)(t), (0, 1)(t), (-1, -1)(t)}. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of mu(M,D) are given.
引用
收藏
页码:897 / 918
页数:22
相关论文
共 50 条
  • [31] Hausdorff dimension of planar self-affine sets and measures
    Barany, Balazs
    Hochman, Michael
    Rapaport, Ariel
    INVENTIONES MATHEMATICAE, 2019, 216 (03) : 601 - 659
  • [32] Non-spectral problem for the planar self-affine measures with decomposable digit sets
    Zhi-Min Wang
    Annals of Functional Analysis, 2020, 11 : 1287 - 1297
  • [33] Spectral property of the planar self-affine measures with three-element digit sets
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Su, Juan
    FORUM MATHEMATICUM, 2020, 32 (03) : 673 - 681
  • [34] A class of self-affine sets and self-affine measures
    Feng, DJ
    Wang, Y
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (01) : 107 - 124
  • [35] A Class of Self-Affine Sets and Self-Affine Measures
    De-Jun Feng
    Yang Wang
    Journal of Fourier Analysis and Applications, 2005, 11 : 107 - 124
  • [36] Spectral self-affine measures on the spatial Sierpinski gasket
    Li, Jian-Lin
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 293 - 322
  • [37] HADAMARD TRIPLES GENERATE SELF-AFFINE SPECTRAL MEASURES
    Dutkay, Dorin Ervin
    Haussermann, John
    Lai, Chun-Kit
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1439 - 1481
  • [38] On Spectra and Spectral Eigenmatrices of Self-Affine Measures on Rn
    Chen, Ming-Liang
    Liu, Jing-Cheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [39] Spectral self-affine measures on the spatial Sierpinski gasket
    Jian-Lin Li
    Monatshefte für Mathematik, 2015, 176 : 293 - 322
  • [40] Arbitrarily Sparse Spectra for Self-Affine Spectral Measures
    An, L. -X.
    Lai, C. -K.
    ANALYSIS MATHEMATICA, 2023, 49 (01) : 19 - 42