Direct Risk Assessment From Myocardial Perfusion Imaging Using Explainable Deep Learning

被引:16
|
作者
Singh, Ananya [1 ,2 ]
Miller, Robert J. H. [1 ,2 ,3 ,4 ]
Otaki, Yuka [1 ,2 ]
Kavanagh, Paul [1 ,2 ]
Hauser, Michael T. [5 ]
Tzolos, Evangelos [1 ,2 ,6 ]
Kwiecinski, Jacek [1 ,2 ,7 ]
Van Kriekinge, Serge [1 ,2 ]
Wei, Chih-Chun [1 ,2 ]
Sharir, Tali [8 ,9 ]
Einstein, Andrew J. [10 ,11 ,12 ]
Fish, Mathews B. [13 ]
Ruddy, Terrence D. [14 ]
Kaufmann, Philipp A. [15 ]
Sinusas, Albert J. [16 ]
Miller, Edward J. [16 ]
Bateman, Timothy M. [17 ]
Dorbala, Sharmila [18 ]
Di Carli, Marcelo [18 ]
Liang, Joanna X. [1 ,2 ]
Huang, Cathleen [1 ,2 ]
Han, Donghee [1 ,2 ]
Dey, Damini [19 ]
Berman, Daniel S. [1 ,2 ]
Slomka, Piotr J. [1 ,2 ]
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Artificial Intelligence Med, 8700 Beverly Blvd,Suite Metro 203, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Dept Imaging, Los Angeles, CA 90048 USA
[3] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
[4] Libin Cardiovasc Inst, Calgary, AB, Canada
[5] Oklahoma Heart Hosp, Dept Nucl Cardiol, Oklahoma City, OK USA
[6] Univ Edinburgh, BHF Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[7] Inst Cardiol, Dept Intervent Cardiol & Angiol, Warsaw, Poland
[8] Assuta Med Ctr, Dept Nucl Cardiol, Tel Aviv, Israel
[9] Ben Gurion Univ Negev, Dept Nucl Cardiol, Beer Sheva, Israel
[10] Columbia Univ, Irving Med Ctr, Dept Med, Div Cardiol, New York, NY USA
[11] New York Presbyterian Hosp, New York, NY USA
[12] Columbia Univ, Irving Med Ctr, Dept Radiol, New York, NY USA
[13] Oregon Heart & Vasc Inst, Sacred Heart Med Ctr, Springfield, OR USA
[14] Univ Ottawa, Heart Inst, Div Cardiol, Ottawa, ON, Canada
[15] Univ Hosp Zurich, Dept Nucl Med, Div Cardiac Imaging, Zurich, Switzerland
[16] Yale Univ, Sch Med, Dept Internal Med, Sect Cardiovasc Med, New Haven, CT 06510 USA
[17] Cardiovasc Imaging Technol LLC, Kansas City, MO USA
[18] Brigham & Womens Hosp, Dept Radiol, Div Nucl Med & Mol Imaging, 75 Francis St, Boston, MA 02115 USA
[19] Cedars Sinai Med Ctr, Dept Biomed Sci, Los Angeles, CA 90048 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; deep; learning; myocardial perfusion imaging; prognosis; risk prediction; SURVIVAL BENEFIT; REVASCULARIZATION; ISCHEMIA;
D O I
10.1016/j.jcmg.2022.07.017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Myocardial perfusion imaging (MPI) is frequently used to provide risk stratification, but methods to improve the accuracy of these predictions are needed. OBJECTIVES The authors developed an explainable deep learning (DL) model (HARD MACE [major adverse cardiac events]-DL) for the prediction of death or nonfatal myocardial infarction (MI) and validated its performance in large internal and external testing groups. METHODS Patients undergoing single-photon emission computed tomography MPI were included, with 20,401 patients in the training and internal testing group (5 sites) and 9,019 in the external testing group (2 different sites). HARD MACEDL uses myocardial perfusion, motion, thickening, and phase polar maps combined with age, sex, and cardiac volumes. The primary outcome was all-cause mortality or nonfatal MI. Prognostic accuracy was evaluated using area under the receiver-operating characteristic curve (AUC). RESULTS During internal testing, patients with normal perfusion and elevated HARD MACE-DL risk were at higher risk than patients with abnormal perfusion and low HARD MACE-DL risk (annualized event rate, 2.9% vs 1.2%; P < 0.001). Patients in the highest quartile of HARD MACE-DL score had an annual rate of death or MI (4.8%) 10-fold higher than patients in the lowest quartile (0.48% per year). In external testing, the AUC for HARD MACE-DL (0.73; 95% CI: 0.710.75) was higher than a logistic regression model (AUC: 0.70), stress total perfusion deficit (TPD) (AUC: 0.65), and ischemic TPD (AUC: 0.63; all P < 0.01). Calibration, a measure of how well predicted risk matches actual risk, was excellent in both groups (Brier score, 0.079 for internal and 0.070 for external). CONCLUSIONS The DL model predicts death or MI directly from MPI, by estimating patient-level risk with good calibration and improved accuracy compared with traditional quantitative approaches. The model incorporates mechanisms to explain to the physician which image regions contribute to the adverse event prediction. (J Am Coll Cardiol Img 2023;16:209-220) (c) 2023 by the American College of Cardiology Foundation.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [11] Synthetic Attenuation Correction Maps for SPECT Imaging using Deep Learning: A Study on Myocardial Perfusion Imaging
    Namias, M.
    Prieto Canalejo, M. A.
    San Pedro, A. Palau
    Geronazzo, R.
    Minsky, D. M.
    Juarez Orozco, L. E.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S270 - S271
  • [12] An Explainable Classification Method of SPECT Myocardial Perfusion Images in Nuclear Cardiology Using Deep Learning and Grad-CAM
    Papandrianos, Nikolaos, I
    Feleki, Anna
    Moustakidis, Serafeim
    Papageorgiou, Elpiniki, I
    Apostolopoulos, Ioannis D.
    Apostolopoulos, Dimitris J.
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [13] “Virtual” attenuation correction: improving stress myocardial perfusion SPECT imaging using deep learning
    Tomoe Hagio
    Alexis Poitrasson-Rivière
    Jonathan B. Moody
    Jennifer M. Renaud
    Liliana Arida-Moody
    Ravi V. Shah
    Edward P. Ficaro
    Venkatesh L. Murthy
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 3140 - 3149
  • [14] "Virtual" attenuation correction: improving stress myocardial perfusion SPECT imaging using deep learning
    Hagio, Tomoe
    Poitrasson-Riviere, Alexis
    Moody, Jonathan B.
    Renaud, Jennifer M.
    Arida-Moody, Liliana
    Shah, Ravi, V
    Ficaro, Edward P.
    Murthy, Venkatesh L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (09) : 3140 - 3149
  • [15] Application of a deep learning algorithm to calcium scoring in myocardial perfusion imaging
    van der Bijl, Pieter
    Stassen, Jan
    Bax, Jeroen J.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2023, 30 (01) : 321 - 323
  • [16] Application of a deep learning algorithm to calcium scoring in myocardial perfusion imaging
    Pieter van der Bijl
    Jan Stassen
    Jeroen J. Bax
    Journal of Nuclear Cardiology, 2023, 30 : 321 - 323
  • [17] Automatic Myocardial Contrast Echocardiography Image Quality Assessment Using Deep Learning: Impact on Myocardial Perfusion Evaluation
    Li, Mingqi
    Zeng, Dewen
    Fei, Hongwen
    Song, Hongning
    Chen, Jinling
    Cao, Sheng
    Hu, Bo
    Zhou, Yanxiang
    Guo, Yuxin
    Xu, Xiaowei
    Huang, Kui
    Zhang, Ji
    Zhou, Qing
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (10): : 2247 - 2255
  • [18] Analysis on SPECT myocardial perfusion imaging with a tool derived from dynamic programming to deep learning
    Wen, Haixing
    Wei, Qiuyue
    Huang, Jin-Long
    Tsai, Shih-Chuan
    Wang, Chi-Yen
    Chiang, Kuo-Feng
    Deng, Yu
    Cui, Xiongtao
    Gao, Rui
    Zhou, Weihua
    Gui, Zhiguo
    Hung, Guang-Uei
    Tang, Shaojie
    OPTIK, 2021, 240
  • [19] Analysis on SPECT myocardial perfusion imaging with a tool derived from dynamic programming to deep learning
    Wen, Haixing
    Wei, Qiuyue
    Huang, Jin-Long
    Tsai, Shih-Chuan
    Wang, Chi-Yen
    Chiang, Kuo-Feng
    Deng, Yu
    Cui, Xiongtao
    Gao, Rui
    Zhou, Weihua
    Gui, Zhiguo
    Hung, Guang-Uei
    Tang, Shaojie
    Hung, Guang-Uei (106143@gmail.com); Tang, Shaojie (tangshaojie@xupt.edu.cn), 1600, Elsevier GmbH (240):
  • [20] Cardiovascular Event Risk Assessment Using Myocardial Perfusion Imaging With a View to Wide Clinical Application
    Yoshinaga, Keiichiro
    CIRCULATION JOURNAL, 2011, 75 (10) : 2318 - 2319