Direct Risk Assessment From Myocardial Perfusion Imaging Using Explainable Deep Learning

被引:17
|
作者
Singh, Ananya [1 ,2 ]
Miller, Robert J. H. [1 ,2 ,3 ,4 ]
Otaki, Yuka [1 ,2 ]
Kavanagh, Paul [1 ,2 ]
Hauser, Michael T. [5 ]
Tzolos, Evangelos [1 ,2 ,6 ]
Kwiecinski, Jacek [1 ,2 ,7 ]
Van Kriekinge, Serge [1 ,2 ]
Wei, Chih-Chun [1 ,2 ]
Sharir, Tali [8 ,9 ]
Einstein, Andrew J. [10 ,11 ,12 ]
Fish, Mathews B. [13 ]
Ruddy, Terrence D. [14 ]
Kaufmann, Philipp A. [15 ]
Sinusas, Albert J. [16 ]
Miller, Edward J. [16 ]
Bateman, Timothy M. [17 ]
Dorbala, Sharmila [18 ]
Di Carli, Marcelo [18 ]
Liang, Joanna X. [1 ,2 ]
Huang, Cathleen [1 ,2 ]
Han, Donghee [1 ,2 ]
Dey, Damini [19 ]
Berman, Daniel S. [1 ,2 ]
Slomka, Piotr J. [1 ,2 ]
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Artificial Intelligence Med, 8700 Beverly Blvd,Suite Metro 203, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Dept Imaging, Los Angeles, CA 90048 USA
[3] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
[4] Libin Cardiovasc Inst, Calgary, AB, Canada
[5] Oklahoma Heart Hosp, Dept Nucl Cardiol, Oklahoma City, OK USA
[6] Univ Edinburgh, BHF Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[7] Inst Cardiol, Dept Intervent Cardiol & Angiol, Warsaw, Poland
[8] Assuta Med Ctr, Dept Nucl Cardiol, Tel Aviv, Israel
[9] Ben Gurion Univ Negev, Dept Nucl Cardiol, Beer Sheva, Israel
[10] Columbia Univ, Irving Med Ctr, Dept Med, Div Cardiol, New York, NY USA
[11] New York Presbyterian Hosp, New York, NY USA
[12] Columbia Univ, Irving Med Ctr, Dept Radiol, New York, NY USA
[13] Oregon Heart & Vasc Inst, Sacred Heart Med Ctr, Springfield, OR USA
[14] Univ Ottawa, Heart Inst, Div Cardiol, Ottawa, ON, Canada
[15] Univ Hosp Zurich, Dept Nucl Med, Div Cardiac Imaging, Zurich, Switzerland
[16] Yale Univ, Sch Med, Dept Internal Med, Sect Cardiovasc Med, New Haven, CT 06510 USA
[17] Cardiovasc Imaging Technol LLC, Kansas City, MO USA
[18] Brigham & Womens Hosp, Dept Radiol, Div Nucl Med & Mol Imaging, 75 Francis St, Boston, MA 02115 USA
[19] Cedars Sinai Med Ctr, Dept Biomed Sci, Los Angeles, CA 90048 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; deep; learning; myocardial perfusion imaging; prognosis; risk prediction; SURVIVAL BENEFIT; REVASCULARIZATION; ISCHEMIA;
D O I
10.1016/j.jcmg.2022.07.017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Myocardial perfusion imaging (MPI) is frequently used to provide risk stratification, but methods to improve the accuracy of these predictions are needed. OBJECTIVES The authors developed an explainable deep learning (DL) model (HARD MACE [major adverse cardiac events]-DL) for the prediction of death or nonfatal myocardial infarction (MI) and validated its performance in large internal and external testing groups. METHODS Patients undergoing single-photon emission computed tomography MPI were included, with 20,401 patients in the training and internal testing group (5 sites) and 9,019 in the external testing group (2 different sites). HARD MACEDL uses myocardial perfusion, motion, thickening, and phase polar maps combined with age, sex, and cardiac volumes. The primary outcome was all-cause mortality or nonfatal MI. Prognostic accuracy was evaluated using area under the receiver-operating characteristic curve (AUC). RESULTS During internal testing, patients with normal perfusion and elevated HARD MACE-DL risk were at higher risk than patients with abnormal perfusion and low HARD MACE-DL risk (annualized event rate, 2.9% vs 1.2%; P < 0.001). Patients in the highest quartile of HARD MACE-DL score had an annual rate of death or MI (4.8%) 10-fold higher than patients in the lowest quartile (0.48% per year). In external testing, the AUC for HARD MACE-DL (0.73; 95% CI: 0.710.75) was higher than a logistic regression model (AUC: 0.70), stress total perfusion deficit (TPD) (AUC: 0.65), and ischemic TPD (AUC: 0.63; all P < 0.01). Calibration, a measure of how well predicted risk matches actual risk, was excellent in both groups (Brier score, 0.079 for internal and 0.070 for external). CONCLUSIONS The DL model predicts death or MI directly from MPI, by estimating patient-level risk with good calibration and improved accuracy compared with traditional quantitative approaches. The model incorporates mechanisms to explain to the physician which image regions contribute to the adverse event prediction. (J Am Coll Cardiol Img 2023;16:209-220) (c) 2023 by the American College of Cardiology Foundation.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [1] Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging
    Miller, Robert J. H.
    Kuronuma, Keiichiro
    Singh, Ananya
    Otaki, Yuka
    Hayes, Sean
    Chareonthaitawee, Panithaya
    Kavanagh, Paul
    Parekh, Tejas
    Tamarappoo, Balaji K.
    Sharir, Tali
    Einstein, Andrew J.
    Fish, Mathews B.
    Ruddy, Terrence D.
    Kaufmann, Philipp A.
    Sinusas, Albert J.
    Miller, Edward J.
    Bateman, Timothy M.
    Dorbala, Sharmila
    Di Carli, Marcelo
    Cadet, Sebastien
    Liang, Joanna X.
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (11) : 1768 - 1774
  • [2] Predicting cardiovascular risk traits from pet myocardial perfusion imaging with deep learning
    Juarez-Orozco, L.
    Yeung, M. W.
    Knol, R. J. J.
    Benjamins, J. W.
    Ruijsink, B.
    Martinez-Manzanera, O.
    Knuuti, J.
    Asselbergs, F.
    Van der Zant, F. M.
    Van der Harst, P.
    [J]. EUROPEAN HEART JOURNAL, 2020, 41 : 292 - 292
  • [3] Explainable prediction of all-cause mortality from myocardial PET flow and perfusion images using deep learning
    Singh, Ananya
    Otaki, Yuka
    Kavanagh, Paul
    Van Kriekinge, Serge
    Miller, Robert
    Chih-Chun, Wei
    Parekh, Tejas
    Gransar, Heidi
    Chen, Nancy
    Berman, Daniel
    Slomka, Piotr
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [4] Deep learning for myocardial ischemia auxiliary diagnosis using CZT SPECT myocardial perfusion imaging
    Su, Ting-Yi
    Chen, Jui-Jen
    Chen, Wei-Shiang
    Chang, Yen-Hsiang
    Lu, Henry Horng-Shing
    [J]. JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2023, 86 (01) : 122 - 130
  • [5] Multi-task Deep Learning of Myocardial Blood Flow and Cardiovascular Risk Traits from PET Myocardial Perfusion Imaging
    Ming Wai Yeung
    Jan Walter Benjamins
    Remco J. J. Knol
    Friso M. van der Zant
    Folkert W. Asselbergs
    Pim van der Harst
    Luis Eduardo Juarez-Orozco
    [J]. Journal of Nuclear Cardiology, 2022, 29 : 3300 - 3310
  • [6] Multi-task Deep Learning of Myocardial Blood Flow and Cardiovascular Risk Traits from PET Myocardial Perfusion Imaging
    Yeung, Ming Wai
    Benjamins, Jan Walter
    Knol, Remco J. J.
    van der Zant, Friso M.
    Asselbergs, Folkert W.
    van der Harst, Pim
    Juarez-Orozco, Luis Eduardo
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2022, 29 (06) : 3300 - 3310
  • [7] Deep learning: Opening a third eye to myocardial perfusion imaging
    Tomoe Hagio
    Venkatesh L. Murthy
    [J]. Journal of Nuclear Cardiology, 2022, 29 : 3311 - 3314
  • [8] Deep learning: Opening a third eye to myocardial perfusion imaging
    Hagio, Tomoe
    Murthy, Venkatesh L.
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2022, 29 (06) : 3311 - 3314
  • [9] Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images
    Singh, Ananya
    Kwiecinski, Jacek
    Miller, Robert J. H.
    Otaki, Yuka
    Kavanagh, Paul B.
    Van Kriekinge, Serge D.
    Parekh, Tejas
    Gransar, Heidi
    Pieszko, Konrad
    Killekar, Aditya
    Tummala, Ramyashree
    Liang, Joanna X.
    Di Carli, Marcelo F.
    Berman, Daniel S.
    Dey, Damini
    Slomka, Piotr J.
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2022, 15 (09) : 645 - 655
  • [10] Synthetic Attenuation Correction Maps for SPECT Imaging Using Deep Learning: A Study on Myocardial Perfusion Imaging
    Canalejo, Mariana Andrea Prieto
    Pedro, Aley Palau San
    Geronazzo, Ricardo
    Minsky, Daniel Mauricio
    Juarez-Orozco, Luis Eduardo
    Namias, Mauro
    [J]. DIAGNOSTICS, 2023, 13 (13)