The new era of artificial intelligence in neuroradiology: current research and promising tools
被引:0
|
作者:
Macruz, Fabiola Bezerra de Carvalho
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Rede DOr Sao Luiz, Dept Radiol & Diagnost Imagem, Sao Paulo, SP, Brazil
Univ Sao Paulo, Lab Invest Med Ressonancia Magnet LIM 44, Sao Paulo, SP, Brazil
Acad Nacl Med, Rio De Janeiro, RJ, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Macruz, Fabiola Bezerra de Carvalho
[1
,2
,3
,4
]
Dias, Ana Luiza Mandetta Pettengil
论文数: 0引用数: 0
h-index: 0
机构:
Diagnost Amer SA, Sao Paulo, SP, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Dias, Ana Luiza Mandetta Pettengil
[5
]
Andrade, Celi Santos
论文数: 0引用数: 0
h-index: 0
机构:
Allianca Grp, Ctr Diagnost Brasil, Sao Paulo, SP, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Andrade, Celi Santos
[6
]
Nucci, Mariana Penteado
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Lab Invest Med Ressonancia Magnet LIM 44, Sao Paulo, SP, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Nucci, Mariana Penteado
[3
]
Rimkus, Carolina de Medeiros
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Rede DOr Sao Luiz, Dept Radiol & Diagnost Imagem, Sao Paulo, SP, Brazil
Univ Sao Paulo, Lab Invest Med Ressonancia Magnet LIM 44, Sao Paulo, SP, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Rimkus, Carolina de Medeiros
[1
,2
,3
]
Lucato, Leandro Tavares
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Diagnost Amer SA, Sao Paulo, SP, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Lucato, Leandro Tavares
[1
,5
]
da Rocha, Antonio Jose
论文数: 0引用数: 0
h-index: 0
机构:
Diagnost Amer SA, Sao Paulo, SP, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
da Rocha, Antonio Jose
[5
]
Kitamura, Felipe Campos
论文数: 0引用数: 0
h-index: 0
机构:
Diagnost Amer SA, Sao Paulo, SP, Brazil
Univ Fed Sao Paulo, Sao Paulo, SP, BrazilUniv Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
Kitamura, Felipe Campos
[5
,7
]
机构:
[1] Univ Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
[2] Rede DOr Sao Luiz, Dept Radiol & Diagnost Imagem, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Lab Invest Med Ressonancia Magnet LIM 44, Sao Paulo, SP, Brazil
[4] Acad Nacl Med, Rio De Janeiro, RJ, Brazil
[5] Diagnost Amer SA, Sao Paulo, SP, Brazil
[6] Allianca Grp, Ctr Diagnost Brasil, Sao Paulo, SP, Brazil
Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.
机构:
Capital Med Univ, Beijing Neurosurg Inst, Dept Neurosurg, Beijing, Peoples R China
Capital Med Univ, Beijing Tiantan Hosp, Beijing, Peoples R China
Beijing Engn Res Ctr, Dept Neurointervent Engn & Technol, Beijing, Peoples R ChinaCapital Med Univ, Beijing Neurosurg Inst, Dept Neurosurg, Beijing, Peoples R China
Jiang, Yuhua
Lv, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Capital Med Univ, Beijing Neurosurg Inst, Dept Neurosurg, Beijing, Peoples R China
Capital Med Univ, Beijing Tiantan Hosp, Beijing, Peoples R China
Beijing Engn Res Ctr, Dept Neurointervent Engn & Technol, Beijing, Peoples R ChinaCapital Med Univ, Beijing Neurosurg Inst, Dept Neurosurg, Beijing, Peoples R China
Lv, Jian
Li, Youxiang
论文数: 0引用数: 0
h-index: 0
机构:
Capital Med Univ, Beijing Neurosurg Inst, Dept Neurosurg, Beijing, Peoples R China
Capital Med Univ, Beijing Tiantan Hosp, Beijing, Peoples R China
Beijing Engn Res Ctr, Dept Neurointervent Engn & Technol, Beijing, Peoples R ChinaCapital Med Univ, Beijing Neurosurg Inst, Dept Neurosurg, Beijing, Peoples R China
Li, Youxiang
Zhang, Yanling
论文数: 0引用数: 0
h-index: 0
机构:
Capital Med Univ, Beijing Tiantan Hosp, Dept Radiol, Beijing, Peoples R ChinaCapital Med Univ, Beijing Neurosurg Inst, Dept Neurosurg, Beijing, Peoples R China