Tantalum Particles Promote M2 Macrophage Polarization and Regulate Local Bone Metabolism via Macrophage-Derived Exosomes Influencing the Fates of BMSCs

被引:1
|
作者
Yang, Junjun [1 ]
Gong, Xiaoyuan [2 ]
Li, Tao [2 ]
Xia, Zengzilu [1 ]
He, Rui [2 ]
Song, Xiongbo [2 ]
Wang, Xin [2 ]
Wu, Jiangyi [3 ]
Chen, Jiajia [4 ]
Wang, Fangzheng [1 ]
Xiong, Ran [2 ]
Lin, Yangjing [2 ]
Chen, Guangxing [2 ]
Yang, Liu [2 ]
Cai, Kaiyong [1 ]
机构
[1] Chongqing Univ, Coll Bioengn, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing 400044, Peoples R China
[2] Third Mil Med Univ, Army Med Univ, Southwest Hosp, Ctr Joint Surg, Chongqing 400038, Peoples R China
[3] Peking Univ Shenzhen Hosp, Dept Sports Med & Rehabil, Shenzhen 518036, Peoples R China
[4] Third Mil Med Univ, Army Med Univ, Ctr Biomed Anal, Chongqing 400038, Peoples R China
基金
中国国家自然科学基金;
关键词
BMSCs; bone defects; calcium signaling pathways; exosomes; macrophages; tantalum; POROUS TANTALUM; HIP-ARTHROPLASTY; OXIDATIVE STRESS; COMPONENT; REVISION; FAILURE; OSTEOGENESIS; ACTIVATION; ADHESION; INJURY;
D O I
10.1002/adhm.202303814
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, the regulatory role and mechanisms of tantalum (Ta) particles in the bone tissue microenvironment are explored. Ta particle deposition occurs in both clinical samples and animal tissues following porous Ta implantation. Unlike titanium (Ti) particles promoting M1 macrophage (M phi) polarization, Ta particles regulating calcium signaling pathways and promoting M2 M phi polarization. Ta-induced M2 M phi enhances bone marrow-derived mesenchymal stem cells (BMSCs) proliferation, migration, and osteogenic differentiation through exosomes (Exo) by upregulating miR-378a-3p/miR-221-5p and downregulating miR-155-5p/miR-212-5p. Ta particles suppress the pro-inflammatory and bone resorption effects of Ti particles in vivo and in vitro. In a rat femoral condyle bone defect model, artificial bone loaded with Ta particles promotes endogenous M phi polarization toward M2 differentiation at the defect site, accelerating bone repair. In conclusion, Ta particles modulate M phi polarization toward M2 and influence BMSCs osteogenic capacity through Exo secreted by M2 M phi, providing insights for potential bone repair applications. Tantalum (Ta) particles enhance M2 macrophage (M phi) polarization via regulating calcium signaling pathways. Ta-induced M2 M phi promote proliferation, migration, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) through exosomal delivery of miR-378a-3p/miR-221-5p and the downregulation of miR-155-5p/miR-212-5p. Additionally, Ta particles mitigate the pro-inflammatory and bone resorption effects of titanium (Ti) particles, accelerating bone defect repair. image
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Engineering M2 type macrophage-derived exosomes for autoimmune hepatitis immunotherapy via loading siRIPK3
    Zhang, Lu
    Liu, Man
    Sun, Qiu
    Cheng, Shuqin
    Chi, Yirong
    Zhang, Jie
    Wang, Bangmao
    Zhou, Lu
    Zhao, Jingwen
    BIOMEDICINE & PHARMACOTHERAPY, 2024, 171
  • [22] Hypoxia-regulated exosomes mediate M2 macrophage polarization and promote metastasis in chondrosarcoma
    Hou, Sheng-Mou
    Lin, Chih-Yang
    Fong, Yi-Chin
    Tang, Chih-Hsin
    AGING-US, 2023, 15 (22): : 13163 - 13175
  • [23] Collagen sponge scaffolds loaded with Trichostatin A pretreated BMSCs-derived exosomes regulate macrophage polarization to promote skin wound healing
    Wang, Tingyu
    Xue, Yuanye
    Zhang, Wenwen
    Zheng, Zetai
    Peng, Xinsheng
    Zhou, Yanfang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 269
  • [24] Hypoxic Tumor-Derived Exosomes Induce M2 Macrophage Polarization via PKM2/AMPK to Promote Lung Cancer Progression
    Zhou, Shiyu
    Lan, Yu
    Li, Yuqun
    Li, Zhenxing
    Pu, Jinding
    Wei, Liping
    CELL TRANSPLANTATION, 2022, 31
  • [25] Epithelial-derived exosomes promote M2 macrophage polarization via Notch2/SOCS1 during mechanical ventilation
    Wang, Yanting
    Xie, Wanli
    Feng, Yiqi
    Xu, Zhenzhen
    He, Yuyao
    Xiong, Yue
    Chen, Lu
    Li, Xia
    Liu, Jie
    Liu, Guoyang
    Wu, Qingping
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2022, 50 (01)
  • [26] M2 Macrophage Exosomes Regulate Hematopoiesis & Resolve Inflammation in Atherosclerosis Via MicroRNA Cargo
    Bouchareychas, Laura
    Duong, Phat
    Covarrubias, Sergio
    Alsop, Eric
    Phu, Tuan Anh Q.
    Chung, Allen
    Gomes, Michael
    Wong, David
    Meechoovet, Bessie
    Capili, Allyson
    Yamamoto, Ryo
    Nakauchi, Hiromitsu
    McManus, Michael
    Carpenter, Susan
    Van Keuren-Jensen, Kendall
    Raffai, Robert
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2020, 40
  • [27] M2 MACROPHAGE EXOSOMES REGULATE HEMATOPOIESIS & RESOLVE INFLAMMATION IN ATHEROSCLEROSIS VIA MICRORNA CARGO
    Bouchareychas, L.
    Duong, P.
    Covarrubias, S.
    Alsop, E.
    Phu, T. A. Q.
    Chung, A.
    Gomes, M.
    Wong, D.
    Meechoovet, B.
    Capili, A.
    Yamamoto, R.
    Nakauchi, H.
    Mcmanus, M.
    Carpenter, S.
    Van Keuren-Jensen, K.
    Raffai, R. L.
    ATHEROSCLEROSIS, 2020, 315 : E2 - E3
  • [28] Adipose-Derived Mesenchymal Stem Cells Promote M2 Macrophage Phenotype through Exosomes
    Heo, June Seok
    Choi, Youjeong
    Kim, Hyun Ok
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [29] An injectable thermosensitive hydrogel delivering M2 macrophage-derived exosomes alleviates osteoarthritis by promoting synovial lymphangiogenesis
    Song, Xiongbo
    Xiao, Jinwen
    Ai, Xiaojun
    Li, Yankun
    Sun, Li
    Chen, Long
    Acta Biomaterialia, 2024, 189 : 130 - 142
  • [30] RETRACTED: M2 Macrophage-Derived Exosomes Facilitate HCC Metastasis by Transferring αMβ2 Integrin to Tumor Cells (Retracted Article)
    Wu, Jindao
    Gao, Wen
    Tang, Qiyun
    Yu, Yue
    You, Wei
    Wu, Zhengshan
    Fan, Ye
    Zhang, Long
    Wu, Chen
    Han, Guoyong
    Zuo, Xueliang
    Zhang, Yao
    Chen, Zhiqiang
    Ding, Wenzhou
    Li, Xiangcheng
    Lin, Fengming
    Shen, Hongbing
    Tang, Jinhai
    Zhang, Yaqin
    Wang, Xuehao
    HEPATOLOGY, 2021, 73 (04) : 1365 - 1380