Constraining the X-ray heating and reionization using 21-cm power spectra with Marginal Neural Ratio Estimation

被引:14
|
作者
Saxena, Anchal [1 ]
Cole, Alex [2 ,3 ]
Gazagnes, Simon [4 ]
Meerburg, P. Daniel [1 ]
Weniger, Christoph [2 ,3 ]
Witte, Samuel J. [2 ,3 ,5 ,6 ]
机构
[1] Univ Groningen, Van Swinderen Inst, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Univ Amsterdam, Inst Theoret Phys Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[4] Univ Texas Austin, Dept Astron, 2515 Speedway,Stop C1400, Austin, TX 78712 USA
[5] Univ Barcelona, Dept Fis Quant & Astrofis, Diagonal 647, E-08028 Barcelona, Spain
[6] Univ Barcelona, Inst Ciencies Cosmos, Diagonal 647, E-08028 Barcelona, Spain
基金
欧洲研究理事会;
关键词
methods: data analysis; methods: statistical; dark ages; reionization; first stars; HIGH-VELOCITY CLOUDS; STAR-FORMATION; GALAXY GROUPS; THERMAL-INSTABILITY; CIRCUMGALACTIC MEDIUM; COLD GAS; COSMOLOGICAL SIMULATIONS; PHYSICAL-PROPERTIES; MASSIVE GALAXIES; HOT ATMOSPHERES;
D O I
10.1093/mnras/stad2659
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmic Dawn (CD) and Epoch of Reionization (EoR) are epochs of the Universe which host invaluable information about the cosmology and astrophysics of X-ray heating and hydrogen reionization. Radio interferometric observations of the 21-cm line at high redshifts have the potential to revolutionize our understanding of the Universe during this time. However, modelling the evolution of these epochs is particularly challenging due to the complex interplay of many physical processes. This makes it difficult to perform the conventional statistical analysis using the likelihood-based Markov-Chain Monte Carlo (mcmc) methods, which scales poorly with the dimensionality of the parameter space. In this paper, we show how the Simulation-Based Inference through Marginal Neural Ratio Estimation (mnre) provides a step towards evading these issues. We use 21cmFAST to model the 21-cm power spectrum during CD-EoR with a six-dimensional parameter space. With the expected thermal noise from the Square Kilometre Array, we are able to accurately recover the posterior distribution for the parameters of our model at a significantly lower computational cost than the conventional likelihood-based methods. We further show how the same training data set can be utilized to investigate the sensitivity of the model parameters over different redshifts. Our results support that such efficient and scalable inference techniques enable us to significantly extend the modelling complexity beyond what is currently achievable with conventional mcmc methods.
引用
收藏
页码:6097 / 6111
页数:15
相关论文
共 50 条
  • [31] High-mass X-ray binaries and the cosmic 21-cm signal: impact of host galaxy absorption
    Das, Arpan
    Mesinger, Andrei
    Pallottini, Andrea
    Ferrara, Andrea
    Wise, John H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (01) : 1166 - 1174
  • [32] The 21-cm signal from the cosmic dawn: metallicity dependence of high-mass X-ray binaries
    Kaur, Harman Deep
    Qin, Yuxiang
    Mesinger, Andrei
    Pallottini, Andrea
    Fragos, Tassos
    Basu-Zych, Antara
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (04) : 5097 - 5108
  • [33] Soft X-Ray Spectra of Plasma in High-Power ECR Heating Regime
    A. I. Meshcheryakov
    I. A. Grishina
    Bulletin of the Lebedev Physics Institute, 2021, 48 : 22 - 26
  • [34] Soft X-Ray Spectra of Plasma in High-Power ECR Heating Regime
    Meshcheryakov, A. I.
    Grishina, I. A.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2021, 48 (01) : 22 - 26
  • [35] Neural networks and the classification of mineralogical samples using X-ray spectra
    Gallagher, M
    Deacon, P
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 2683 - 2687
  • [36] Emulation of the cosmic dawn 21-cm power spectrum and classification of excess radio models using an artificial neural network
    Sikder, Sudipta
    Barkana, Rennan
    Reis, Itamar
    Fialkov, Anastasia
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 9977 - 9998
  • [37] NEW LIMITS ON 21 cm EPOCH OF REIONIZATION FROM PAPER-32 CONSISTENT WITH AN X-RAY HEATED INTERGALACTIC MEDIUM AT z=7.7
    Parsons, Aaron R.
    Liu, Adrian
    Aguirre, James E.
    Ali, Zaki S.
    Bradley, Richard F.
    Carilli, Chris L.
    DeBoer, David R.
    Dexter, Matthew R.
    Gugliucci, Nicole E.
    Jacobs, Daniel C.
    Klima, Pat
    MacMahon, David H. E.
    Manley, Jason R.
    Moore, David F.
    Pober, Jonathan C.
    Stefan, Irina I.
    Walbrugh, William P.
    ASTROPHYSICAL JOURNAL, 2014, 788 (02):
  • [38] Constraining black hole masses in low-accreting active galactic nuclei using X-ray spectra
    Jang, I.
    Gliozzi, M.
    Hughes, C.
    Titarchuk, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (01) : 72 - 85
  • [39] Estimation of X-ray Patient Thickness by flat-panel Cardio-Vascular x-ray systems using neural network
    Desponds, L
    Goodman, GC
    Klausz, R
    Ma, B
    Relihan, GF
    Marchal, R
    RADIOLOGY, 2000, 217 : 519 - 519
  • [40] Measuring the shock-heating rate in the winds of O stars using X-ray line spectra
    Cohen, David H.
    Li, Zequn
    Gayley, Kenneth G.
    Owocki, Stanley P.
    Sundqvist, Jon O.
    Petit, Veronique
    Leutenegger, Maurice A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 444 (04) : 3729 - 3737