NUMERICAL RANGE FOR WEIGHTED MOORE-PENROSE INVERSE OF TENSOR

被引:0
|
作者
Be, Aaisha [1 ]
Shekhar, Vaibhav [2 ,3 ]
Mishra, Debasisha [1 ]
机构
[1] Natl Inst Technol, Dept Math, Raipur 492010, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[3] Govt Engn Coll, Dept Appl Sci & Humanities, Sheikhpura 811105, Bihar, India
来源
关键词
Tensor; Einstein product; Numerical range; Numerical radius; Weighted Moore-Penrose inverse; MATRICES; RADIUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit its several properties. We also obtain a few new results in matrix setting.
引用
收藏
页码:140 / 171
页数:32
相关论文
共 50 条
  • [11] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Cui, Chong
    Wang, Hongxing
    Wei, Yimin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4163 - 4186
  • [12] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Chong Cui
    Hongxing Wang
    Yimin Wei
    Journal of Applied Mathematics and Computing, 2023, 69 : 4163 - 4186
  • [13] NUMERICAL PROCEDURE FOR COMPUTING THE MOORE-PENROSE INVERSE
    LUECKE, GR
    NUMERISCHE MATHEMATIK, 1979, 32 (02) : 129 - 137
  • [14] THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE
    Xu, Wei-Wei
    Cai, Li-Xia
    Li, Wen
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 521 - 538
  • [15] On a partial order defined by the weighted Moore-Penrose inverse
    Hernandez, A.
    Lattanzi, M.
    Thome, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7310 - 7318
  • [16] An improved Newton iteration for the weighted Moore-Penrose inverse
    Huang, F
    Zhang, X
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) : 1460 - 1486
  • [17] Acute perturbation bounds of weighted Moore-Penrose inverse
    Ma, Haifeng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (04) : 710 - 720
  • [18] The Weighted Moore-Penrose Inverse of a Matrix over Antirings
    Bao, Yu-Bao
    Wang, Qing-Wen
    Liu, Bao-Fu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 8 - 11
  • [19] REPRESENTATIONS FOR THE WEIGHTED MOORE-PENROSE INVERSE OF A PARTITIONED MATRIX
    MIAO, JM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (04) : 321 - 323
  • [20] NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE
    Zhang, Xiaobo
    Xu, Qingxiang
    Wei, Yimin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 216 - 226