NUMERICAL RANGE FOR WEIGHTED MOORE-PENROSE INVERSE OF TENSOR

被引:0
|
作者
Be, Aaisha [1 ]
Shekhar, Vaibhav [2 ,3 ]
Mishra, Debasisha [1 ]
机构
[1] Natl Inst Technol, Dept Math, Raipur 492010, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[3] Govt Engn Coll, Dept Appl Sci & Humanities, Sheikhpura 811105, Bihar, India
来源
关键词
Tensor; Einstein product; Numerical range; Numerical radius; Weighted Moore-Penrose inverse; MATRICES; RADIUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit its several properties. We also obtain a few new results in matrix setting.
引用
收藏
页码:140 / 171
页数:32
相关论文
共 50 条
  • [1] Numerical Range of Moore-Penrose Inverse Matrices
    Chien, Mao-Ting
    MATHEMATICS, 2020, 8 (05)
  • [2] Weighted generalized Moore-Penrose inverse
    Mosic, Dijana
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (06) : 919 - 932
  • [3] The generalized weighted Moore-Penrose inverse
    Sheng X.
    Chen G.
    Journal of Applied Mathematics and Computing, 2007, 25 (1-2) : 407 - 413
  • [4] Existence of Weighted Moore-Penrose Inverse
    Zhuang, Guifen
    Chen, Jianlong
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 477 - 480
  • [5] Weighted Moore-Penrose inverse of a Boolean matrix
    Bapat, RB
    Jain, SK
    Pati, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 255 : 267 - 279
  • [6] Expression for the perturbation of the weighted Moore-Penrose inverse
    Wei, YM
    Wu, HB
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (5-6) : 13 - 18
  • [7] The weighted Moore-Penrose inverse of modified matrices
    Wei, YM
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 122 (01) : 1 - 13
  • [8] THE WEIGHTED MOORE-PENROSE INVERSE FOR SUM OF MATRICES
    Xiong, Zhiping
    Qin, Yingying
    OPERATORS AND MATRICES, 2014, 8 (03): : 747 - 757
  • [9] The representation and approximation for the weighted Moore-Penrose inverse
    Wei, YM
    Wu, HB
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 121 (01) : 17 - 28
  • [10] Weighted Moore-Penrose Inverse of a Fuzzy Matrix
    Cheng, Shi-zhen
    Li, Hong-xing
    FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 573 - +