FDA-FFNet: A Feature-Distance Attention-Based Change Detection Network for Remote Sensing Image

被引:1
|
作者
Peng, Wenguang [1 ]
Shi, Wenzhong [2 ,3 ]
Zhang, Min [2 ,3 ]
Wang, Lukang [4 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Hong Kong Polytech Univ, Smart Cities Res Inst, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
[4] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
关键词
Feature extraction; Image segmentation; Remote sensing; Euclidean distance; Surveillance; Support vector machines; Standards; Attention-based; change detection (CD); deep learning; deep supervision; multiscale feature; LAND-COVER;
D O I
10.1109/JSTARS.2023.3344633
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks have demonstrated remarkable capability in extracting deep semantic features from images, leading to significant advancements in various image processing tasks. This success has also opened up new possibilities for change detection (CD) in remote sensing applications. But unlike the conventional image recognition tasks, the performance of AI models in CD heavily relies on the method used to fuse the features from two different phases of the image. The existing deep-learning-based methods for CD typically fuse features of bitemporal images using difference or concatenation techniques. However, these approaches often fail tails to prioritize potential change areas adequately and neglect the rich contextual information essential for discerning subtle changes, potentially leading to slower convergence speed and reduced accuracy. To tackle this challenge, we propose a novel feature fusion approach called feature-difference attention-based feature fusion CD network. This method aims to enhance feature fusion by incorporating a feature-difference attention-based feature fusion module, enabling a more focused analysis of change areas. Additionally, a deep-supervised attention module is implemented to leverage the deep surveillance module for cascading refinement of change areas. Furthermore, an atrous spatial pyramid pooling fast is employed to efficiently acquire multiscale object information. The proposed method is evaluated on two publicly available datasets, namely the WHU-CD and LEVIR-CD datasets. Compared with the state-of-the-art CD methods, the proposed method outperforms in all metrics, with an intersection over union of 92.49% and 85.56%, respectively.
引用
下载
收藏
页码:2224 / 2233
页数:10
相关论文
共 50 条
  • [21] Efficient Object Detection in Optical Remote Sensing Imagery via Attention-Based Feature Distillation
    Shamsolmoali P.
    Chanussot J.
    Zhou H.
    Lu Y.
    IEEE Transactions on Geoscience and Remote Sensing, 2023, 61 : 1 - 12
  • [22] Attention-based pyramid decoder network for salient object detection in remote sensing images
    Liu, Yu
    Lin, Jie
    Yue, Gongtao
    Shao, Zhaosheng
    Zhang, Shanwen
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [23] Optical Remote Sensing Image Change Detection Based on Attention Mechanism and Image Difference
    Peng, Xueli
    Zhong, Ruofei
    Li, Zhen
    Li, Qingyang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7296 - 7307
  • [24] Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture
    Yin, Hongyang
    Ma, Chong
    Weng, Liguo
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2023, 15 (17)
  • [25] A SPATIAL-CHANNEL ATTENTION-BASED CONVOLUTIONAL NEURAL NETWORK FOR REMOTE SENSING IMAGE CLASSIFICATION
    Shuai, Yuanzhen
    Yuan, Qiao
    Zhao, Shanshan
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3628 - 3631
  • [26] AFDN: ATTENTION-BASED FEEDBACK DEHAZING NETWORK FOR UAV REMOTE SENSING IMAGE HAZE REMOVAL
    Wang, Shan
    Wu, Hanlin
    Zhang, Libao
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3822 - 3826
  • [27] CSANet: a channel-spatial attention network for remote sensing image change detection
    Cai, Yuyang
    Liao, Shuhong
    He, Wenxuan
    Huang, Weiliang
    Yan, Jingwen
    Liu, Lei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (19) : 5936 - 5959
  • [28] Domain Adaptive and Interactive Differential Attention Network for Remote Sensing Image Change Detection
    Ji, Yuliang
    Sun, Weiwei
    Wang, Yumiao
    Lv, Zhiyong
    Yang, Gang
    Zhan, Yuanzeng
    Li, Chong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [29] Remote Sensing Image Change Detection Based on Information Transmission and Attention Mechanism
    Liu, Ruochen
    Cheng, Zhihong
    Zhang, Langlang
    Li, Jianxia
    IEEE ACCESS, 2019, 7 : 156349 - 156359
  • [30] Robust feature aggregation network for lightweight and effective remote sensing image change detection
    You, Zhi-Hui
    Chen, Si-Bao
    Wang, Jia-Xin
    Luo, Bin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 215 : 31 - 43