FDA-FFNet: A Feature-Distance Attention-Based Change Detection Network for Remote Sensing Image

被引:1
|
作者
Peng, Wenguang [1 ]
Shi, Wenzhong [2 ,3 ]
Zhang, Min [2 ,3 ]
Wang, Lukang [4 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Hong Kong Polytech Univ, Smart Cities Res Inst, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
[4] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
关键词
Feature extraction; Image segmentation; Remote sensing; Euclidean distance; Surveillance; Support vector machines; Standards; Attention-based; change detection (CD); deep learning; deep supervision; multiscale feature; LAND-COVER;
D O I
10.1109/JSTARS.2023.3344633
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks have demonstrated remarkable capability in extracting deep semantic features from images, leading to significant advancements in various image processing tasks. This success has also opened up new possibilities for change detection (CD) in remote sensing applications. But unlike the conventional image recognition tasks, the performance of AI models in CD heavily relies on the method used to fuse the features from two different phases of the image. The existing deep-learning-based methods for CD typically fuse features of bitemporal images using difference or concatenation techniques. However, these approaches often fail tails to prioritize potential change areas adequately and neglect the rich contextual information essential for discerning subtle changes, potentially leading to slower convergence speed and reduced accuracy. To tackle this challenge, we propose a novel feature fusion approach called feature-difference attention-based feature fusion CD network. This method aims to enhance feature fusion by incorporating a feature-difference attention-based feature fusion module, enabling a more focused analysis of change areas. Additionally, a deep-supervised attention module is implemented to leverage the deep surveillance module for cascading refinement of change areas. Furthermore, an atrous spatial pyramid pooling fast is employed to efficiently acquire multiscale object information. The proposed method is evaluated on two publicly available datasets, namely the WHU-CD and LEVIR-CD datasets. Compared with the state-of-the-art CD methods, the proposed method outperforms in all metrics, with an intersection over union of 92.49% and 85.56%, respectively.
引用
下载
收藏
页码:2224 / 2233
页数:10
相关论文
共 50 条
  • [1] An attention-based multiscale transformer network for remote sensing image change detection
    Liu, Wei
    Lin, Yiyuan
    Liu, Weijia
    Yu, Yongtao
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 599 - 609
  • [2] ADS-Net:An Attention-Based deeply supervised network for remote sensing image change detection
    Wang, Decheng
    Chen, Xiangning
    Jiang, Mingyong
    Du, Shuhan
    Xu, Bijie
    Wang, Junda
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 101
  • [3] Attention-based feature pyramid networks for ship detection of optical remote sensing image
    Yu Y.
    Ai H.
    He X.
    Yu S.
    Zhong X.
    Zhu R.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (02): : 107 - 115
  • [4] Remote Sensing Image Change Detection Transformer Network Based on Dual-Feature Mixed Attention
    Song, Xinyang
    Hua, Zhen
    Li, Jinjiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Attention-Based Multistage Fusion Network for Remote Sensing Image Pansharpening
    Zhang, Wanwan
    Li, Jinjiang
    Hua, Zhen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Progressive Attention-Based Feature Recovery With Scribble Supervision for Saliency Detection in Optical Remote Sensing Image
    Li, Xuan
    Xu, Yuhang
    Ma, Lei
    Huang, Zhenghua
    Yuan, Haiwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection
    Chen, Hao
    Shi, Zhenwei
    REMOTE SENSING, 2020, 12 (10)
  • [8] Dual-Attention-Guided Multiscale Feature Aggregation Network for Remote Sensing Image Change Detection
    Ren, Hongjin
    Xia, Min
    Weng, Liguo
    Hu, Kai
    Lin, Haifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4899 - 4916
  • [9] Bitemporal Attention Sharing Network for Remote Sensing Image Change Detection
    Wang, Zhongchen
    Gu, Guowei
    Xia, Min
    Weng, Liguo
    Hu, Kai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 10368 - 10379
  • [10] CANet: A Combined Attention Network for Remote Sensing Image Change Detection
    Lu, Di
    Wang, Liejun
    Cheng, Shuli
    Li, Yongming
    Du, Anyu
    INFORMATION, 2021, 12 (09)