LidarGait: Benchmarking 3D Gait Recognition with Point Clouds

被引:26
|
作者
Shen, Chuanfu [1 ,2 ]
Chao, Fan [2 ]
Wu, Wei [2 ]
Wang, Rui [2 ]
Huang, George Q.
Yu, Shiqi [2 ,3 ]
机构
[1] Univ Hong Kong, Dept Ind & Mfg Syst Engn, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
[3] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.00108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video-based gait recognition has achieved impressive results in constrained scenarios. However, visual cameras neglect human 3D structure information, which limits the feasibility of gait recognition in the 3D wild world. Instead of extracting gait features from images, this work explores precise 3D gait features from point clouds and proposes a simple yet efficient 3D gait recognition framework, termed LidarGait. Our proposed approach projects sparse point clouds into depth maps to learn the representations with 3D geometry information, which outperforms existing point-wise and camera-based methods by a significant margin. Due to the lack of point cloud datasets, we build the first large-scale LiDAR-based gait recognition dataset, SUSTech1K, collected by a LiDAR sensor and an RGB camera. The dataset contains 25,239 sequences from 1,050 subjects and covers many variations, including visibility, views, occlusions, clothing, carrying, and scenes. Extensive experiments show that (1) 3D structure information serves as a significant feature for gait recognition. (2) LidarGait outperforms existing point-based and silhouette-based methods by a significant margin, while it also offers stable cross-view results. (3) The LiDAR sensor is superior to the RGB camera for gait recognition in the outdoor environment. The source code and dataset have been made available at https://lidargait.github.io.
引用
收藏
页码:1054 / 1063
页数:10
相关论文
共 50 条
  • [31] 3D shape from unorganized 3D point clouds
    Kamberov, G
    Kamberova, G
    Jain, A
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 621 - +
  • [32] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [33] Meshfree thinning of 3D point clouds
    Dyn, Nira
    Iske, Armin
    Wendland, Holger
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (04) : 409 - 425
  • [34] Generating 3D Adversarial Point Clouds
    Xiang, Chong
    Qi, Charles R.
    Li, Bo
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9128 - 9136
  • [35] 3D Point Clouds Parameterization Alogrithm
    Wang, Lihui
    Yuan, Baozong
    Miao, Zhenjiang
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1411 - 1414
  • [36] Towards Optimal 3D Point Clouds
    Nuechter, Andreas
    Elseberg, Jan
    Borrmann, Dorit
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2013, 27 (09): : 29 - 33
  • [37] Meshfree Thinning of 3D Point Clouds
    Nira Dyn
    Armin Iske
    Holger Wendland
    Foundations of Computational Mathematics, 2008, 8 : 409 - 425
  • [38] Structure Perception in 3D Point Clouds
    Gruchalla, Kenny
    Raghupathi, Sunand
    Brunhart-Lupo, Nicholas
    ACM SYMPOSIUM ON APPLIED PERCEPTION (SAP 2021), 2021,
  • [39] A Study on Protruding Pattern Recognition of Jomon Potteries from 3D Point Clouds
    Kikuchi, Ao
    Erdenebayar, Shurentsetseg
    Kinoshita, Tsutomu
    Konno, Kouichi
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2022, 2022, 12177
  • [40] Structure-based Object Classification and Recognition for 3D Scenes in Point Clouds
    Ning Xiaojuan
    Wang Yinghui
    Hao Wen
    Zhao Minghua
    Sui Liansheng
    Shi Zhenghao
    2014 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV2014), 2014, : 166 - 173