High-entropy electrolytes for practical lithium metal batteries

被引:157
|
作者
Kim, Sang Cheol [1 ]
Wang, Jingyang [1 ]
Xu, Rong [1 ]
Zhang, Pu [1 ]
Chen, Yuelang [2 ]
Huang, Zhuojun [1 ]
Yang, Yufei [1 ]
Yu, Zhiao [2 ]
Oyakhire, Solomon T. [3 ]
Zhang, Wenbo [1 ]
Greenburg, Louisa C. [1 ]
Kim, Mun Sek [3 ]
Boyle, David T. [2 ]
Sayavong, Philaphon [2 ]
Ye, Yusheng [1 ]
Qin, Jian [3 ]
Bao, Zhenan [3 ]
Cui, Yi [1 ,4 ,5 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA USA
[3] Stanford Univ, Dept Chem Engn, Stanford, CA USA
[4] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA 94305 USA
[5] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
ENERGY; ANODE;
D O I
10.1038/s41560-023-01280-1
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrolyte engineering is crucial for improving battery performance, particularly for lithium metal batteries. Recent advances in electrolytes have greatly improved cyclability by enhancing electrochemical stability at the electrode interfaces, but concurrently achieving high ionic conductivity has remained challenging. Here we report an electrolyte design strategy for enhanced lithium metal batteries by increasing the molecular diversity in electrolytes, which essentially leads to high-entropy electrolytes. We find that, in weakly solvating electrolytes, the entropy effect reduces ion clustering while preserving the characteristic anion-rich solvation structures, which is characterized by synchrotron-based X-ray scattering and molecular dynamics simulations. Electrolytes with smaller-sized clusters exhibit a twofold improvement in ionic conductivity compared with conventional weakly solvating electrolytes, enabling stable cycling at high current densities up to 2C (6.2 mA cm(-2)) in anode-free LiNi0.6Mn0.2Co0.2 (NMC622)||Cu pouch cells. The efficacy of the design strategy is verified by performance improvements in three disparate weakly solvating electrolyte systems. Electrolyte engineering has proven an effective approach to enhance the performance of lithium metal batteries. Here the authors propose a strategy by using multiple solvents in weakly solvating electrolytes-dubbed as high-entropy electrolytes-to improve the ionic conductivity while maintaining electrochemical stability, leading to high-performance batteries.
引用
收藏
页码:814 / 826
页数:13
相关论文
共 50 条
  • [41] High-entropy sulfides enhancing adsorption and catalytic conversion of lithium polysulfides for lithium-sulfur batteries
    Yating Huang
    Jiajun Wang
    Wei Zhao
    Lujun Huang
    Jinpeng Song
    Yajie Song
    Shaoshuai Liu
    Bo Lu
    Journal of Energy Chemistry, 2025, 102 (03) : 263 - 270
  • [42] High Voltage Electrolytes for Lithium Batteries
    Ren, Qimeng
    Wang, Qinglei
    Li, Yinwen
    Song, Xuesheng
    Shangguan, Xuehui
    Li, Faqiang
    PROGRESS IN CHEMISTRY, 2023, 35 (07) : 1077 - 1096
  • [43] Reliable liquid electrolytes for lithium metal batteries
    Yang, Huicong
    Li, Juan
    Sun, Zhenhua
    Fang, Ruopian
    Wang, Da-Wei
    He, Kuang
    Cheng, Hui-Ming
    Li, Feng
    ENERGY STORAGE MATERIALS, 2020, 30 : 113 - 129
  • [44] Flowable polymer electrolytes for lithium metal batteries
    Aldalur, Itziar
    Martinez-Ibanez, Maria
    Krzton-Maziopa, Anna
    Piszcz, Michal
    Armand, Michel
    Zhang, Heng
    JOURNAL OF POWER SOURCES, 2019, 423 : 218 - 226
  • [45] Concentrated electrolytes for rechargeable lithium metal batteries
    Tian, Chunxi
    Qin, Kun
    Suo, Liumin
    MATERIALS FUTURES, 2023, 2 (01):
  • [46] Polymer electrolytes for rechargeable lithium metal batteries
    Li, Hongping
    Xu, Zhixin
    Yang, Jun
    Wang, Jiulin
    Hirano, Shin-ichi
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) : 5469 - 5487
  • [47] Ultrastable electrolyte (>3500 hours at high current density) achieved by high-entropy solvation toward practical aqueous zinc metal batteries
    Xie, Bin
    Zheng, Chaohe
    Lang, Haoran
    Li, Min
    Hu, Qiang
    Tan, Xin
    Zheng, Qiaoji
    Huo, Yu
    Zhao, Jingxin
    Yang, Jia-Lin
    Gu, Zhen-Yi
    Lin, Dunmin
    Wu, Xing-Long
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (19) : 7281 - 7293
  • [48] Multifunctionalizing electrolytes in situ for lithium metal batteries
    Yang, Xiaoping
    Cheng, Fang
    Yang, Ziqian
    Ka, Ou
    Wen, Lang
    Wang, Xiaoqu
    Liu, Shixi
    Lu, Wen
    Dai, Liming
    NANO ENERGY, 2023, 116
  • [49] Countersolvent Electrolytes for Lithium-Metal Batteries
    Piao, Nan
    Ji, Xiao
    Xu, Hong
    Fan, Xiulin
    Chen, Long
    Liu, Sufu
    Garaga, Mounesha N.
    Greenbaum, Steven C.
    Wang, Li
    Wang, Chunsheng
    He, Xiangming
    ADVANCED ENERGY MATERIALS, 2020, 10 (10)
  • [50] High-entropy sulfides enhancing adsorption and catalytic conversion of lithium polysulfides for lithium-sulfur batteries
    Huang, Yating
    Wang, Jiajun
    Zhao, Wei
    Huang, Lujun
    Song, Jinpeng
    Song, Yajie
    Liu, Shaoshuai
    Lu, Bo
    JOURNAL OF ENERGY CHEMISTRY, 2025, 102 : 263 - 270