High-entropy electrolytes for practical lithium metal batteries

被引:95
|
作者
Kim, Sang Cheol [1 ]
Wang, Jingyang [1 ]
Xu, Rong [1 ]
Zhang, Pu [1 ]
Chen, Yuelang [2 ]
Huang, Zhuojun [1 ]
Yang, Yufei [1 ]
Yu, Zhiao [2 ]
Oyakhire, Solomon T. [3 ]
Zhang, Wenbo [1 ]
Greenburg, Louisa C. [1 ]
Kim, Mun Sek [3 ]
Boyle, David T. [2 ]
Sayavong, Philaphon [2 ]
Ye, Yusheng [1 ]
Qin, Jian [3 ]
Bao, Zhenan [3 ]
Cui, Yi [1 ,4 ,5 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA USA
[3] Stanford Univ, Dept Chem Engn, Stanford, CA USA
[4] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA 94305 USA
[5] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
ENERGY; ANODE;
D O I
10.1038/s41560-023-01280-1
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrolyte engineering is crucial for improving battery performance, particularly for lithium metal batteries. Recent advances in electrolytes have greatly improved cyclability by enhancing electrochemical stability at the electrode interfaces, but concurrently achieving high ionic conductivity has remained challenging. Here we report an electrolyte design strategy for enhanced lithium metal batteries by increasing the molecular diversity in electrolytes, which essentially leads to high-entropy electrolytes. We find that, in weakly solvating electrolytes, the entropy effect reduces ion clustering while preserving the characteristic anion-rich solvation structures, which is characterized by synchrotron-based X-ray scattering and molecular dynamics simulations. Electrolytes with smaller-sized clusters exhibit a twofold improvement in ionic conductivity compared with conventional weakly solvating electrolytes, enabling stable cycling at high current densities up to 2C (6.2 mA cm(-2)) in anode-free LiNi0.6Mn0.2Co0.2 (NMC622)||Cu pouch cells. The efficacy of the design strategy is verified by performance improvements in three disparate weakly solvating electrolyte systems. Electrolyte engineering has proven an effective approach to enhance the performance of lithium metal batteries. Here the authors propose a strategy by using multiple solvents in weakly solvating electrolytes-dubbed as high-entropy electrolytes-to improve the ionic conductivity while maintaining electrochemical stability, leading to high-performance batteries.
引用
收藏
页码:814 / 826
页数:13
相关论文
共 50 条
  • [1] High-entropy electrolytes for practical lithium metal batteries
    Sang Cheol Kim
    Jingyang Wang
    Rong Xu
    Pu Zhang
    Yuelang Chen
    Zhuojun Huang
    Yufei Yang
    Zhiao Yu
    Solomon T. Oyakhire
    Wenbo Zhang
    Louisa C. Greenburg
    Mun Sek Kim
    David T. Boyle
    Philaphon Sayavong
    Yusheng Ye
    Jian Qin
    Zhenan Bao
    Yi Cui
    [J]. Nature Energy, 2023, 8 : 814 - 826
  • [2] High-Entropy Electrolytes for Lithium-Ion Batteries
    Wang, Qidi
    Wang, Jianlin
    Heringa, Jouke R.
    Bai, Xuedong
    Wagemaker, Marnix
    [J]. ACS ENERGY LETTERS, 2024, 9 (08): : 3796 - 3806
  • [3] High-Entropy Materials for Lithium Batteries
    Ritter, Timothy G.
    Pappu, Samhita
    Shahbazian-Yassar, Reza
    [J]. BATTERIES-BASEL, 2024, 10 (03):
  • [4] Amorphous High-Entropy Alloy Interphase for Stable Lithium Metal Batteries
    Zheng, Longhong
    Lv, Ruixin
    Luo, Chong
    Guo, Yafei
    Yang, Mingfan
    Hu, Kaikai
    Wang, Ke
    Li, Li
    Wu, Feng
    Chen, Renjie
    [J]. ADVANCED ENERGY MATERIALS, 2024,
  • [5] High entropy liquid electrolytes for lithium batteries
    Wang, Qidi
    Zhao, Chenglong
    Wang, Jianlin
    Yao, Zhenpeng
    Wang, Shuwei
    Kumar, Sai Govind Hari
    Ganapathy, Swapna
    Eustace, Stephen
    Bai, Xuedong
    Li, Baohua
    Wagemaker, Marnix
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] High entropy liquid electrolytes for lithium batteries
    Qidi Wang
    Chenglong Zhao
    Jianlin Wang
    Zhenpeng Yao
    Shuwei Wang
    Sai Govind Hari Kumar
    Swapna Ganapathy
    Stephen Eustace
    Xuedong Bai
    Baohua Li
    Marnix Wagemaker
    [J]. Nature Communications, 14 (1)
  • [7] Working Principles of High-Entropy Electrolytes in Rechargeable Batteries
    Ren, Ke-Feng
    Liu, He
    Guo, Jia-Xin
    Sun, Xin
    Jiang, Feng
    Guo, Cong
    Bao, Weizhai
    Yu, Feng
    Kalimuldina, Gulnur
    Kong, Long
    Cheng, Xin-Bing
    Li, Jingfa
    [J]. ACS ENERGY LETTERS, 2024, 9 (06): : 2960 - 2980
  • [8] Synergistic electrochemical catalysis by high-entropy metal phosphide in lithium-sulfur batteries
    Liu, Sisi
    Chen, Manfang
    Luo, Yixin
    He, Yongqian
    Zhang, Wanqi
    Chen, Ying
    Wang, Mengqing
    Ye, Yongjie
    Zhu, Kai
    Luo, Yan
    Yu, Ruizhi
    Hou, Jianhua
    Liu, Hong
    Shu, Hongbo
    Wang, Xianyou
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 669 : 126 - 136
  • [9] A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries
    Zheng, Yuenan
    Yi, Yikun
    Fan, Meihong
    Liu, Hanyu
    Li, Xue
    Zhang, Rui
    Li, Mingtao
    Qiao, Zhen-An
    [J]. ENERGY STORAGE MATERIALS, 2019, 23 : 678 - 683
  • [10] High-Entropy Lithium Argyrodite Solid Electrolytes Enabling Stable All-Solid-State Batteries
    Li, Shenghao
    Lin, Jing
    Schaller, Mareen
    Indris, Sylvio
    Zhang, Xin
    Brezesinski, Torsten
    Nan, Ce-Wen
    Wang, Shuo
    Strauss, Florian
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (50)