A Kruskal-Katona-type theorem for graphs: q-Kneser graphs

被引:3
|
作者
Wang, Jun [1 ]
Xu, Ao [1 ]
Zhang, Huajun [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Shaoxing Univ, Dept Math, Shaoxing 312000, Peoples R China
基金
中国国家自然科学基金;
关键词
Erdos-Ko-Rado theorem; Intersecting family; Kruskal-Katona theorem; Linear space over a q-element field; q-Kneser graph; INTERSECTION-THEOREMS; SYSTEMS;
D O I
10.1016/j.jcta.2023.105766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The "Kruskal-Katona-type problem for a graph G" concerned here is to describe subsets of vertices of G that have minimum number of neighborhoods with respect to their sizes. In this paper, we establish a Kruskal-Katona-type theorem for the q-Kneser graphs, whose vertex set consists of all k-dimensional subspaces of an n-dimensional linear space over a q-element field, two subspaces are adjacent if they have the trivial intersection. It includes as a special case the Erdos-Ko-Rado theorem for intersecting families in finite vector spaces and yields a short proof of the Hilton-Milner theorem for nontrivial intersecting families in finite vector spaces. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] On the chromatic number of some geometric type Kneser graphs
    Araujo, G.
    Dumitrescu, A.
    Hurtado, F.
    Noy, M.
    Urrutia, J.
    Comput Geom Theory Appl, 1600, 1 (59-69):
  • [22] Stable sets of maximal size in Kneser-type graphs
    Larose, B
    Malvenuto, C
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (05) : 657 - 673
  • [23] Automorphism groups of bipartite Kneser type-k graphs
    Sreekumar, K. G.
    Ramesh Kumar, P.
    Manilal, K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (03)
  • [24] INVARIANTS OF BIPARTITE KNESER B TYPE-k GRAPHS
    Jayakumar, C.
    Sreekumar, K.G.
    Manilal, K.
    Cangul, Ismail Naci
    arXiv,
  • [25] Nonexistence of a Kruskal-Katona type theorem for double-sided shadow minimization in the Boolean cube layer
    Bashov, Maksim
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2013, 5 (01) : 53 - 62
  • [26] Binomial and Q-binomial coefficient inequalities related to the Hamiltonicity of the Kneser graphs and their Q-analogues
    Clark, WE
    Ismail, MEH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (01) : 83 - 98
  • [27] Erdos-Ko-Rado theorem, Grassmann graphs and ps-Kneser graphs for vector spaces over a residue class ring
    Huang, Li-Ping
    Lv, Benjian
    Wang, Kaishun
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 164 : 125 - 158
  • [28] A Bernstein Type Theorem for Entire Willmore Graphs
    Chen, Jingyi
    Lamm, Tobias
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (01) : 456 - 469
  • [29] Ramsey-Type Theorem for Spatial Graphs
    Seiya Negami
    Graphs and Combinatorics, 1998, 14 : 75 - 80
  • [30] A DIRAC-TYPE THEOREM FOR SQUARES OF GRAPHS
    TRACZYK, T
    JOURNAL OF GRAPH THEORY, 1988, 12 (04) : 463 - 467