Grain Regrowth and Bifacial Passivation for High-Efficiency Wide-Bandgap Perovskite Solar Cells

被引:57
|
作者
Liu, Zhou [1 ]
Zhu, Changhuai [1 ]
Luo, Haowen [1 ]
Kong, Wenchi [1 ]
Luo, Xin [1 ]
Wu, Jinlong [1 ]
Ding, Changzeng [2 ,3 ]
Chen, Yiyao [4 ]
Wang, Yurui [1 ]
Wen, Jin [1 ]
Gao, Yuan [1 ]
Tan, Hairen [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Frontiers Sci Ctr Crit Earth Mat Cycling, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotec & Nanob, i Lab, Suzhou 215123, Peoples R China
[3] Chinese Acad Sci, Printable Elect Res Ctr, Suzhou Inst Nanotec & Nanob, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, Vacuum Interconnected Nanotech Workstat Nano X, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
4-T tandem solar cells; bifacial passivation; grain regrowth; nonradiative recombination losses; semitransparent PSCs; HALIDE PEROVSKITES; LIMIT;
D O I
10.1002/aenm.202203230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The wide-bandgap perovskite solar cell is a crucial part of perovskite/silicon tandem solar cells, which offer an avenue for surpassing the power conversion efficiency (PCE) limit of single-junction silicon solar cells. However, the actual efficiency of such tandem solar cells today is diminished by the nonradiative recombination losses in the wide-bandgap perovskite subcells. Here, this work reports a grain regrowth and bifacial passivation (GRBP) strategy to reduce recombination losses at the grain boundaries and perovskite/charge transport layer interfaces simultaneously. This is achieved by a posttreatment of perovskite films with a mixture of methylammonium thiocyanate (MASCN) and phenethylammonium iodide (PEAI). The MASCN induces the regrowth of perovskite grains and simultaneously facilitates the penetration of PEAI into the hole-transport-layer (HTL)/perovskite bottom interface. Thereby, the bulk and interface nonradiative recombination losses are reduced and the open-circuit voltage in solar cells is considerably increased. PCEs of 21.9% and 19.9% for the 1.65-eV bandgap opaque and semitransparent perovskite solar cells, respectively, are obtained. The encapsulated semitransparent perovskite solar cells retain their initial efficiency following 500 h of operation under one-sun illumination in ambient conditions. The perovskite/silicon 4-terminal (4-T) tandem cells are fabricated with impressive PCEs 29.8% and 28.5% for 0.049 cm(2) and 1 cm(2) devices, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells
    Guo, Xiao
    Jia, Zhenrong
    Liu, Shunchang
    Guo, Renjun
    Jiang, Fangyuan
    Shi, Yangwei
    Dong, Zijing
    Luo, Ran
    Wang, Yu-Duan
    Shi, Zhuojie
    Li, Jia
    Chen, Jinxi
    Lee, Ling Kai
    Mueller-Buschbaum, Peter
    Ginger, David S.
    Paterson, David J.
    Hou, Yi
    JOULE, 2024, 8 (09) : 2554 - 2569
  • [42] Enhanced Efficiency and Stability of Wide-Bandgap Perovskite Solar Cells Via Molecular Modification with Piperazinium Salt
    Luo, Yi
    Zhu, Jingwei
    Yin, Xinxing
    Jiao, Wenbo
    Gao, Zhiyu
    Xu, Yuliang
    Wang, Changlei
    Wang, Yang
    Lai, Huagui
    Huang, Hao
    Luo, Jincheng
    Wang, Juncheng
    You, Jiayu
    Zhang, Zhihao
    Hao, Xia
    Zeng, Guanggen
    Ren, Shengqiang
    Li, Zaifang
    Fu, Fan
    Li, Minghui
    Xiao, Chuanxiao
    Chen, Cong
    Zhao, Dewei
    ADVANCED ENERGY MATERIALS, 2024, 14 (25)
  • [43] Bifacial stamping for high efficiency perovskite solar cells
    Zhang, Yong
    Kim, Seul-Gi
    Lee, Donghwa
    Shin, Hyunjung
    Park, Nam-Gyu
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) : 308 - 321
  • [44] Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells
    Liu, Jiale
    Chen, Xiayan
    Chen, Kaizhong
    Tian, Wenming
    Sheng, Yusong
    She, Bin
    Jiang, Youyu
    Zhang, Deyi
    Liu, Yang
    Qi, Jianhang
    Chen, Kai
    Ma, Yongmin
    Qiu, Zexiong
    Wang, Chaoyang
    Yin, Yanfeng
    Zhao, Shengli
    Leng, Jing
    Jin, Shengye
    Zhao, Wenshan
    Qin, Yanyang
    Su, Yaqiong
    Li, Xiaoyu
    Li, Xiaojiang
    Zhou, Yang
    Zhou, Yinhua
    Ling, Furi
    Mei, Anyi
    Han, Hongwei
    SCIENCE, 2024, 383 (6688) : 1198 - 1204
  • [45] Porous alumina passivation contact enables high-efficiency perovskite solar cells
    Qian, Jiadong
    Peng, Jun
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (24): : 3117 - 3119
  • [46] Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells
    Fang, Zhimin
    Jia, Lingbo
    Yan, Nan
    Jiang, Xiaofen
    Ren, Xiaodong
    Yang, Shangfeng
    Liu, Shengzhong
    INFOMAT, 2022, 4 (06)
  • [47] Investigating ASnI2Br wide bandgap tin perovskite for bifacial solar cells: Modeling of bifacial efficiency with comparative analysis
    Kumar Sharma, Rajesh
    Narsi Patel, Hitarth
    Singh Thakur, Dhruv
    Garg, Vivek
    Yadav, Shivendra
    Solar Energy, 2024, 283
  • [48] Additive and interface passivation dual synergetic strategy enables reduced voltage loss in wide-bandgap perovskite solar cells
    Meng, Xin
    Liu, Xiaoxuan
    Zhou, Qisen
    Liu, Zonghao
    Chen, Wei
    NANO ENERGY, 2024, 128
  • [49] Investigation of the Selectivity of Carrier Transport Layers in Wide-Bandgap Perovskite Solar Cells
    Kavadiya, Shalinee
    Onno, Arthur
    Boyd, Caleb C.
    Wang, Xingyi
    Cetta, Alexa
    McGehee, Michael D.
    Holman, Zachary C.
    SOLAR RRL, 2021, 5 (07)
  • [50] Minimizing the Ohmic Resistance of Wide-Bandgap Perovskite for Semitransparent and Tandem Solar Cells
    Ye, Haoran
    Xu, Weiquan
    Tang, Fei
    Yu, Bohao
    Zhang, Cuiling
    Ma, Nanxi
    Lu, Feiping
    Yang, Yuzhao
    Shen, Kai
    Duan, Weiyuan
    Lambertz, Andreas
    Ding, Kaining
    Mai, Yaohua
    SOLAR RRL, 2023, 7 (03)