Self-Supervised Learning for Electroencephalography

被引:171
|
作者
Rafiei, Mohammad H. [1 ]
Gauthier, Lynne V. [2 ]
Adeli, Hojjat [3 ,4 ]
Takabi, Daniel [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Univ Massachusetts Lowell, Dept Phys Therapy & Kinesiol, Lowell, MA 01854 USA
[3] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
关键词
Electroencephalography; Brain modeling; Data models; Task analysis; Machine learning; Training; Heuristic algorithms; Electroencephalography (EEG); machine learning; self-supervised learning (SSL); BRAIN-COMPUTER INTERFACE; EMOTION RECOGNITION; NEURAL-NETWORK; EEG; SYSTEM; CLASSIFICATION; SLEEP; FEATURES; FRAMEWORK; ALGORITHM;
D O I
10.1109/TNNLS.2022.3190448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decades of research have shown machine learning superiority in discovering highly nonlinear patterns embedded in electroencephalography (EEG) records compared with conventional statistical techniques. However, even the most advanced machine learning techniques require relatively large, labeled EEG repositories. EEG data collection and labeling are costly. Moreover, combining available datasets to achieve a large data volume is usually infeasible due to inconsistent experimental paradigms across trials. Self-supervised learning (SSL) solves these challenges because it enables learning from EEG records across trials with variable experimental paradigms, even when the trials explore different phenomena. It aggregates multiple EEG repositories to increase accuracy, reduce bias, and mitigate overfitting in machine learning training. In addition, SSL could be employed in situations where there is limited labeled training data, and manual labeling is costly. This article: 1) provides a brief introduction to SSL; 2) describes some SSL techniques employed in recent studies, including EEG; 3) proposes current and potential SSL techniques for future investigations in EEG studies; 4) discusses the cons and pros of different SSL techniques; and 5) proposes holistic implementation tips and potential future directions for EEG SSL practices.
引用
收藏
页码:1457 / 1471
页数:15
相关论文
共 50 条
  • [21] Self-supervised learning for outlier detection
    Diers, Jan
    Pigorsch, Christian
    STAT, 2021, 10 (01):
  • [22] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [23] Relational Self-Supervised Learning on Graphs
    Lee, Namkyeong
    Hyun, Dongmin
    Lee, Junseok
    Park, Chanyoung
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1054 - 1063
  • [24] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [25] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [26] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [27] COMBINING SELF-SUPERVISED AND SUPERVISED LEARNING WITH NOISY LABELS
    Zhang, Yongqi
    Zhang, Hui
    Yao, Quanming
    Wan, Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 605 - 609
  • [28] Self-Supervised Learning for Videos: A Survey
    Schiappa, Madeline C.
    Rawat, Yogesh S.
    Shah, Mubarak
    ACM COMPUTING SURVEYS, 2023, 55 (13S)
  • [29] Self-supervised learning in medicine and healthcare
    Krishnan, Rayan
    Rajpurkar, Pranav
    Topol, Eric J.
    NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) : 1346 - 1352
  • [30] Graph Adversarial Self-Supervised Learning
    Yang, Longqi
    Zhang, Liangliang
    Yang, Wenjing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34