The globus compute dataset: An open function-as-a-service dataset from the edge to the cloud

被引:7
|
作者
Bauer, Andre [1 ,2 ]
Pan, Haochen [1 ]
Chard, Ryan [2 ]
Babuji, Yadu [1 ]
Bryan, Josh [1 ]
Tiwari, Devesh [3 ]
Foster, Ian [1 ,2 ]
Chard, Kyle [1 ,2 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Argonne, IL USA
[3] Northeastern Univ, Boston, MA 02138 USA
基金
美国国家科学基金会;
关键词
Serverless computing; Globus compute; FAIR dataset; Computing continuum;
D O I
10.1016/j.future.2023.12.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a unique function -as -a -service (FaaS) dataset capturing the use of the Globus Compute (previously funcX) platform. Globus Compute implements a federated model via which users may deploy endpoints on arbitrary remote computers, from the edge to high performance computing (HPC) cluster, and they may then invoke Python functions on those endpoints via a reliable cloud -hosted service. The dataset covers 31 weeks and includes 2121472 task submissions from 252 users executed on 580 remote computing endpoints. It includes 277386 registered functions. We describe the dataset and various observations, some that are similar to other FaaS datasets, for example, that 74% of tasks run for less than 1 s, and some that are unique to Globus Compute, for example, that endpoints are used in different ways and that the majority of functions are related to scientific computing and machine learning. To the best of our knowledge, this dataset represents the first federated FaaS dataset that includes user workloads, distributed computing endpoints, and analysis of registered function bodies. We expect the dataset to be useful for researching FaaS architectures, workload modeling, container warming, and other distributed computing architectures.
引用
收藏
页码:558 / 574
页数:17
相关论文
共 50 条
  • [21] Toward Generating a New Cloud-Based Distributed Denial of Service (DDoS) Dataset and Cloud Intrusion Traffic Characterization
    Shafi, Mohammadmoein
    Lashkari, Arash Habibi
    Rodriguez, Vicente
    Nevo, Ron
    INFORMATION, 2024, 15 (04)
  • [22] U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images
    Kang, Jonggu
    Kim, Geunah
    Jeong, Yemin
    Kim, Seoyeon
    Youn, Youjeong
    Cho, Soobin
    Lee, Yangwon
    KOREAN JOURNAL OF REMOTE SENSING, 2021, 37 (05) : 1149 - 1161
  • [23] Service and network function placement in the edge-cloud continuum
    Tsolkas, Dimitris
    Charsmiadis, Anastastios-Stavros
    Xenakis, Dionysis
    Merakos, Lazaros
    2022 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING, CSCN, 2022, : 188 - 193
  • [24] A linked and open dataset from a network of learning repositories on organic agriculture
    Rajabi, Enayat
    Sanchez-Alonso, Salvador
    Sicilia, Miguel-Angel
    Manouselis, Nikos
    BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2017, 48 (01) : 71 - 82
  • [25] HSC: An Artificial Intelligence Service Composition Dataset from Hugging Face
    Wang, Xiao
    Rong, Dunlei
    Xu, Hanchuan
    He, Xiangdong
    Wang, Zhongjie
    SERVICE-ORIENTED COMPUTING, ICSOC 2024, PT II, 2025, 15405 : 225 - 239
  • [26] A Dataset of Service Time and Related Patient Characteristics from an Outpatient Clinic
    Feng, Haolin
    Jia, Yiwu
    Zhou, Siyi
    Chen, Hongyi
    Huang, Teng
    DATA, 2023, 8 (03)
  • [27] Sentinel-1 EW mode dataset for Antarctica from 2014-2020 produced by the CASEarth Cloud Service Platform
    Liang, Dong
    Guo, Huadong
    Zhang, Lu
    Li, Haipeng
    Wang, Xuezhi
    BIG EARTH DATA, 2022, 6 (04) : 385 - 400
  • [28] Merged Cloud and Precipitation Dataset from the HIAPER GV for the Cloud System Evolution in the Trades (CSET) Campaign
    Schwartz, M. Christian
    Ghate, Virendra P.
    Albrecht, Bruce. A.
    Zuidema, Paquita
    Cadeddu, Maria P.
    Vivekanandan, Jothiram
    Ellis, Scott M.
    Tsai, Pei
    Eloranta, Edwin W.
    Mohrmann, Johannes
    Wood, Robert
    Bretherton, Christopher S.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2019, 36 (06) : 921 - 940
  • [29] Merged cloud and precipitation dataset from the HIAPER GV for the Cloud System Evolution in the Trades (CSET) campaign
    Christian Schwartz, M.
    Ghate, Virendra P.
    Albrecht, Bruce A.
    Zuidema, Paquita
    Cadeddu, Maria P.
    Vivekanandan, Jothiram
    Ellis, Scott M.
    Tsai, Pei
    Eloranta, Edwin W.
    Mohrmann, Johannes
    Wood, Robert
    Bretherton, Christopher S.
    Journal of Atmospheric and Oceanic Technology, 2019, 36 (06): : 921 - 940
  • [30] DRL-Based Service Function Chain Edge-to-Edge and Edge-to-Cloud Joint Offloading in Edge-Cloud Network
    Fan, Wentao
    Yang, Fan
    Wang, Peilong
    Miao, Mao
    Zhao, Pengcheng
    Huang, Tao
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 4478 - 4493