Heteroatom-doped carbon attached to ultra-fine Fe-NiCoP as high-performance oxygen electrocatalyst for Zn-air batteries

被引:15
|
作者
Ren, Shucheng [1 ]
Liu, Li [1 ]
Meng, Fandi [1 ]
Liu, Yongli [2 ]
Xie, Yushi [2 ]
Sun, Hong-bin [3 ]
Yang, Yang [4 ]
Yan, Haile [5 ]
Wang, Fuhui [1 ]
机构
[1] Northeastern Univ, Shenyang Natl Lab Mat Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Dept Mat Phys & Chem, Shenyang 110819, Liaoning, Peoples R China
[3] Northeastern Univ, Dept Chem, Shenyang 110819, Peoples R China
[4] Univ Cent Florida, NanoSci Technol Ctr, Renewable Energy & Chem Transformat Cluster, Dept Mat Sci & Engn,Dept Chem,Stephen W Howking Ct, Orlando, FL 32826 USA
[5] Northeastern Univ, Coll Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Peoples R China
关键词
Fe-doped NiCoP; Heteroatom-doped carbon; Organophosphorus complexes; Bifunctional electrocatalysts; Zn -air battery; DFT calculation; METAL-ORGANIC FRAMEWORKS; HYDROGEN EVOLUTION; EFFICIENT; NANOPARTICLES; REDUCTION; SURFACE; NICKEL; NANOTUBES; ELECTRODE;
D O I
10.1016/j.ensm.2023.103086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The construction of efficient and durable electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) remains a challenge for rechargeable Zn-air batteries (ZABs). Bimetallic phosphide (NiCoP) holds considerable promise as a bifunctional catalyst. Here, an efficient NiCoP-based bifunctional electrocatalyst was fabricated using PCN-222-assembled organophosphorus complexes, specifically 1,1-bis (diphenylphosphine)ferrocene (DPPF). These DPPF complexes serve as sources of phosphorus and metals, undergoing in-situ conversion into Fe-doped NiCoP nanoparticles (Fe-NiCoP) while simultaneously constructing a heteroatom-doped carbon matrix (NPC). The final catalytic structure, composed of ultra-fine Fe-NiCoP nanoparticles confined within the NPC, exhibits superior bifunctional electrocatalytic activity (with a Delta Egap of 0.69 V between OER and ORR) and exceptional stability. In-situ Raman spectroscopy and DFT calculations reveal that the high performance arises from the synergistic effect of Fe-NiCoP and NPC, where Fe-NiCoP triggers the catalytic activity of the attached NPC. The calculated active site is identified as the C atom near the N atom on the NPC, lowering the potential barrier for O-containing intermediate compounds and enhancing the catalytic performance. In addition, NPC protects the Fe-NiCoP core from oxidation during battery cycles, allowing ZABs equipped with this catalyst to achieve high power density and long-term cycling performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries
    Dong, Mengyang
    Liu, Xu
    Jiang, Lixue
    Zhu, Zhengju
    Shu, Yajie
    Chen, Shan
    Dou, Yuhai
    Liu, Porun
    Yin, Huajie
    Zhao, Huijun
    GREEN ENERGY & ENVIRONMENT, 2020, 5 (04) : 499 - 505
  • [32] The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn-air batteries
    Dinh, Khang Ngoc
    Pei, Zengxia
    Yuan, Ziwen
    Hoang, Van Chinh
    Wei, Li
    Huang, Qianwei
    Liao, Xiaozhou
    Liu, Chuntai
    Chen, Yuan
    Yan, Qingyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (15) : 7297 - 7308
  • [33] Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries
    Jiajie Li
    Shanbao Zou
    Jinzhen Huang
    Xiaoqian Wu
    Yue Lu
    Xundao Liu
    Bo Song
    Dehua Dong
    ChineseChemicalLetters, 2023, 34 (01) : 207 - 211
  • [34] Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries
    Li, Jiajie
    Zou, Shanbao
    Huang, Jinzhen
    Wu, Xiaoqian
    Lu, Yue
    Liu, Xundao
    Song, Bo
    Dong, Dehua
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)
  • [35] Ultra dispersed Co supported on nitrogen-doped carbon: An efficient electrocatalyst for oxygen reduction reaction and Zn-air battery
    Zhang, Shuai
    Shang, Ningzhao
    Gao, Shutao
    Meng, Tao
    Wang, Zhi
    Gao, Yongjun
    Wang, Chun
    CHEMICAL ENGINEERING SCIENCE, 2021, 234
  • [36] Cobalt Nanoparticles on Plasma-Controlled Nitrogen-Doped Carbon as High-Performance ORR Electrocatalyst for Primary Zn-Air Battery
    Kim, Seonghee
    Park, Hyun
    Li, Oi Lun
    NANOMATERIALS, 2020, 10 (02)
  • [37] Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries
    Shi, Jinjin
    Shu, Xinxin
    Xiang, Chensheng
    Li, Hong
    Li, Yang
    Du, Wei
    An, Pengfei
    Tian, He
    Zhang, Jintao
    Xia, Haibing
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (11) : 6861 - 6871
  • [38] Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries
    Jing-Jing Chen
    Shuai Gu
    Rui Hao
    Zhen-Yu Wang
    Mu-Qing Li
    Zhi-Qiang Li
    Kun Liu
    Ke-Meng Liao
    Zhi-Qiang Wang
    He Huang
    Ying-Zhi Li
    Kai-Li Zhang
    Zhou-Guang Lu
    RareMetals, 2022, 41 (06) : 2055 - 2062
  • [39] Polypyrrole hydrogel as a universal precursor for the target preparation of heteroatom-doped hierarchical carbon with atomically distributed metal sites towards high-efficiency ORR and Zn-air batteries
    Guois, Wenxue
    Teng, Xiaotong
    Zhao, Qinhui
    Zhang, Bin
    Yue, Qi
    Tan, Wei
    Du, Hongmei
    Yu, Jie
    Zhou, Baolong
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (02) : 515 - 525
  • [40] Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries
    Chen, Jing-Jing
    Gu, Shuai
    Hao, Rui
    Wang, Zhen-Yu
    Li, Mu-Qing
    Li, Zhi-Qiang
    Liu, Kun
    Liao, Ke-Meng
    Wang, Zhi-Qiang
    Huang, He
    Li, Ying-Zhi
    Zhang, Kai-Li
    Lu, Zhou-Guang
    RARE METALS, 2022, 41 (06) : 2055 - 2062