Cationic surfactant for lithium-sulfur batteries enables efficient use of sulfur and limits lithium dendrite formation

被引:1
|
作者
Xiao, Yinglin [1 ,2 ]
Liu, Zhongbo [3 ]
Wu, Jiachun [1 ]
Liu, Chang [1 ]
Peng, Yanqiu [4 ]
Fan, Yanchen [1 ,5 ]
Chang, Jian [1 ]
Zheng, Zijian [6 ]
Huang, Wei [5 ,7 ,8 ]
Chen, Guohua [9 ]
Deng, Yonghong [1 ]
机构
[1] Southern Univ Sci & Technol SUSTech, Dept Mat Sci & Engn, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
[2] Xinyu Univ, Sch New Energy Sci & Engn, Xinyu City 338000, Jiangxi, Peoples R China
[3] Shenzhen Capchem Technol Co Ltd, Shenzhen 518118, Guangdong, Peoples R China
[4] EVE Energy Co Ltd, Huizhou 516006, Peoples R China
[5] Petro China Shenzhen Renewable Energy Res Inst Co, Shenzhen 518000, Peoples R China
[6] Hong Kong Polytech Univ, Inst Text & Clothing ITC, Hong Kong 999077, Peoples R China
[7] Southern Univ Sci & Technol, Digital Econ Res Ctr De Fin, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Peoples R China
[8] Southern Univ Sci & Technol, Coll Business, Shenzhen 518055, Peoples R China
[9] City Univ Hong Kong, Sch Energy & Environm, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2023年 / 4卷 / 11期
关键词
ELECTROLYTES; DEPOSITION;
D O I
10.1016/j.xcrp.2023.101658
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur batteries (LSBs) are promising energy-storage systems due to their high theoretical energy density. However, LSBs' practical energy density is limited by a large electrolyte-to-sulfur (E/S) ratio (>5 mL mg (-1) S), and their reversible operation encounters challenges from electrode passivation and Li dendrite formation. Herein, we report a strategy for enhancing LSBs' performance by using a cationic surfactant-based electrolyte additive: tetramethylammonium hexafluorophosphate (TAHP). The stronger electrostatic interaction between the tetramethylammonium cation and the short-chain polysulfide (PS) anion promotes the reduction of long chain PS to short-chain PS, inducing 3D particulate deposition of Li2S and thus increasing both sulfur utilization and discharge potential, alleviating electrode passivation. Moreover, tetramethylammonium cations can adsorb around Li protrusions to form a lithiophobic protective layer that inhibits the formation of Li dendrites. As a result, the TAHP lithium-sulfur pouch cell maintained an excellent capacity retention ratio with 78.3% after 250 cycles under lean -electrolyte conditions (4.5 mL mg( -1) sufur [S]).
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries
    Peng, Hong-Jie
    Zhang, Ze-Wen
    Huang, Jia-Qi
    Zhang, Ge
    Xie, Jin
    Xu, Wen-Tao
    Shi, Jia-Le
    Chen, Xiang
    Cheng, Xin-Bing
    Zhang, Qiang
    ADVANCED MATERIALS, 2016, 28 (43) : 9551 - +
  • [32] A highly efficient polysulfide mediator for lithium-sulfur batteries
    Liang, Xiao
    Hart, Connor
    Pang, Quan
    Garsuch, Arnd
    Weiss, Thomas
    Nazar, Linda F.
    NATURE COMMUNICATIONS, 2015, 6
  • [33] Effective Separation of Lithium Anode and Sulfur Cathode in Lithium-Sulfur Batteries
    Vizintin, Alen
    Patel, Manu U. M.
    Genorio, Bostjan
    Dominko, Robert
    CHEMELECTROCHEM, 2014, 1 (06): : 1040 - 1045
  • [34] Experimental Methods for Assembly of Dendrite-free Lithium-Sulfur Batteries
    Ushioda, Yusuke
    Takahashi, Keitaro
    Watanabe, Masayoshi
    Seki, Shiro
    CHEMISTRY LETTERS, 2021, 50 (06) : 1217 - 1219
  • [35] Staged dendrite suppression for high safe and stable lithium-sulfur batteries
    Jun Jiang
    Zhenjie Lu
    Yanwen Ding
    Shujun Liu
    Zhijie Qi
    Tian Tang
    Yunfan Zhang
    Zhiyuan Ma
    Jingwen Sun
    Liang Xue
    Wenyao Zhang
    Pan Xiong
    Xin Wang
    Junwu Zhu
    Yongsheng Fu
    Journal of Energy Chemistry, 2025, 100 (01) : 674 - 683
  • [36] Staged dendrite suppression for high safe and stable lithium-sulfur batteries
    Jiang, Jun
    Lu, Zhenjie
    Ding, Yanwen
    Liu, Shujun
    Qi, Zhijie
    Tang, Tian
    Zhang, Yunfan
    Ma, Zhiyuan
    Sun, Jingwen
    Xue, Liang
    Zhang, Wenyao
    Xiong, Pan
    Wang, Xin
    Zhu, Junwu
    Fu, Yongsheng
    JOURNAL OF ENERGY CHEMISTRY, 2025, 100 : 674 - 683
  • [37] Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries
    Li, Jingxue
    Dai, Liqin
    Wang, Zhefan
    Wang, Hao
    Xie, Lijing
    Chen, Jingpeng
    Yan, Chong
    Yuan, Hong
    Wang, Hongliang
    Chen, Chengmeng
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 736 - 744
  • [38] Stabilization Strategies of Lithium Metal Anode Toward Dendrite-Free Lithium-Sulfur Batteries
    Liu, Zhiyuan
    Sun, Luyang
    Liu, Xianyu
    Lu, Qiongqiong
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (60)
  • [39] Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries
    Jingxue Li
    Liqin Dai
    Zhefan Wang
    Hao Wang
    Lijing Xie
    Jingpeng Chen
    Chong Yan
    Hong Yuan
    Hongliang Wang
    Chengmeng Chen
    Journal of Energy Chemistry , 2022, (04) : 736 - 744
  • [40] Microreactor Strategy to Capture Sulfur for Lithium-Sulfur Batteries
    You, Yingying
    Ni, Junze
    Cai, Yingying
    Xiong, Qianhui
    Chen, Xinyu
    Hu, Siqi
    Li, Yahui
    Jin, Liujun
    Zhang, Hanping
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (44): : 16260 - 16270