The computational complexity of Holant problems on 3-regular graphs

被引:0
|
作者
Yang, Peng [1 ,2 ]
Huang, Yuan [1 ,2 ]
Fu, Zhiguo [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Peoples R China
[2] Northeast Normal Univ, KLAS, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
Holant problems; Computational complexity; Dichotomy; SLOCC; HOLOGRAPHIC ALGORITHMS; DICHOTOMY;
D O I
10.1016/j.tcs.2023.114256
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Holant problem is a framework to study counting problems, which is expressive enough to contain Counting Graph Homomorphisms (#GH) and Counting Constraint Satisfaction Problems (#CSP) as special cases. In the present paper, we classify the computational complexity of Holant problems on 3-regular graphs, where the signature is complex valued and not necessarily symmetric. In details, we prove that Holant problem on 3-regular graphs is #P-hard except for the signature is not genuinely entangled, A-transformable, P-transformable or vanishing, in which cases the problem is tractable.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On the minimum bisection of random 3-regular graphs
    Lichev, Lyuben
    Mitsche, Dieter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [22] The question of the collapsibility of random 3-regular graphs
    Spencer, JJ
    DISCRETE MATHEMATICS, 2001, 230 (1-3) : 253 - 253
  • [23] Largest 2-Regular Subgraphs in 3-Regular Graphs
    Ilkyoo Choi
    Ringi Kim
    Alexandr V. Kostochka
    Boram Park
    Douglas B. West
    Graphs and Combinatorics, 2019, 35 : 805 - 813
  • [24] Sampling Edge Covers in 3-Regular Graphs
    Bezakova, Ivona
    Rummler, William A.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2009, 2009, 5734 : 137 - 148
  • [25] On a class of Hamiltonian laceable 3-regular graphs
    Alspach, B
    Chen, CC
    McAvaney, K
    DISCRETE MATHEMATICS, 1996, 151 (1-3) : 19 - 38
  • [26] On 3-regular 4-ordered graphs
    Meszaros, Karola
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2149 - 2155
  • [27] On a class of Hamiltonian laceable 3-regular graphs
    Alspach, Brian
    Chen, C.C.
    McAvaney, Kevin
    1996, Elsevier (151) : 1 - 3
  • [28] Random railways modeled as random 3-regular graphs
    Garmo, H
    RANDOM STRUCTURES & ALGORITHMS, 1996, 9 (1-2) : 113 - 136
  • [29] Codes for distributed storage from 3-regular graphs
    Gao, Shuhong
    Knoll, Fiona
    Manganiello, Felice
    Matthews, Gretchen
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 82 - 89
  • [30] SYMMETRIES OF 3-REGULAR 3-CONNECTED PLANAR GRAPHS
    MOORE, EF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A400 - A400