Federated malware detection based on many-objective optimization in cross-architectural IoT

被引:0
|
作者
Zhang, Zhigang [1 ]
Zhang, Zhixia [1 ]
Cui, Zhihua [1 ]
机构
[1] Taiyuan Univ Sci & Technol, Shanxi Key Lab Big Data Anal & Parallel Comp, Taiyuan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
cross-architecture; federated learning (FL); Internet of Things (IoT); malware detection; many-objective optimization; EVOLUTIONARY ALGORITHM; SECURITY;
D O I
10.1002/cpe.7919
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the rising adoption of the Internet of Things (IoT) across a variety of industries, malware is increasingly targeting the large number of IoT devices that lack adequate protection. Malware hunting is challenging in the IoT due to the variety of instruction set architectures of devices, as shown by the differences in the relevant characteristics of malware on different platforms. There are also serious concerns about resource utilization and privacy leaks in the development of conventional detection models. This study suggests a novel federated malware detection framework based on many-objective optimization (FMDMO) for the IoT to overcome the problems. First, the framework provides a cross-platform compatible basis with the federated mechanism as the backbone, while avoiding raw data sharing to improve privacy protection. Second, an intelligent optimization-based client selection method is designed for four objectives: learning performance, architectural selection deviation, time consumption, and training stability, which leads malware detection to retain a high degree of cross-architectural generalization while enhancing training efficiency. Based on a large IoT malware dataset we constructed, containing 62,515 malware samples across seven typical architectures, the FMDMO is evaluated comprehensively in three scenarios. The experimental results demonstrate the FMDMO substantially enhances the model's cross-platform detection performance while preserving effective training and flexibility.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [31] Many-objective (Combinatorial) Optimization is Easy
    Liefooghe, Arnaud
    Lopez-Ibanez, Manuel
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 704 - 712
  • [32] A Multiobjective Framework for Many-Objective Optimization
    Liu, Si-Chen
    Zhan, Zhi-Hui
    Tan, Kay Chen
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13654 - 13668
  • [33] Behavior of Evolutionary Many-Objective Optimization
    Ishibuchi, Hisao
    Tsukamoto, Noritaka
    Nojima, Yusuke
    2008 UKSIM TENTH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION, 2008, : 266 - 271
  • [34] A New Visualization for Many-Objective Optimization
    Xiao, Yushun
    Sun, Qi
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1998 - 2002
  • [35] Online Objective Reduction for Many-Objective Optimization Problems
    Cheung, Yiu-ming
    Gu, Fangqing
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1165 - 1171
  • [36] Many-Objective Whale Optimization Algorithm for Engineering Design and Large-Scale Many-Objective Optimization Problems
    Kalita, Kanak
    Ramesh, Janjhyam Venkata Naga
    Cep, Robert
    Jangir, Pradeep
    Pandya, Sundaram B.
    Ghadai, Ranjan Kumar
    Abualigah, Laith
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [37] A diversity indicator based on reference vectors for many-objective optimization
    Cai, Xinye
    Sun, Haoran
    Fan, Zhun
    INFORMATION SCIENCES, 2018, 430 : 467 - 486
  • [38] Many-Objective Particle Swarm Optimization Algorithm Based on Preference
    Zhao, Yangjie
    Liu, Jianchang
    Yu, Xia
    Li, Fei
    Zhu, Jiani
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3168 - 3174
  • [39] A Many-Objective Optimization Algorithm Based on Weight Vector Adjustment
    Wang, Yanjiao
    Sun, Xiaonan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [40] A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
    Yang, Shengxiang
    Li, Miqing
    Liu, Xiaohui
    Zheng, Jinhua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (05) : 721 - 736