Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System

被引:79
|
作者
Zhang, Li [1 ,2 ]
Xu, Jianbo [1 ,2 ]
Vijayakumar, Pandi [3 ]
Sharma, Pradip Kumar [4 ]
Ghosh, Uttam [5 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Hunan Univ Sci & Technol, Hunan Key Lab Serv Comp & Novel Software Technol, Xiangtan 411201, Peoples R China
[3] Univ Coll Engn Tindivanam, Dept Comp Sci & Engn, Tindivanam 604001, Tamilnadu, India
[4] Univ Aberdeen, Dept Comp Sci, Aberdeen AB243UE, Scotland
[5] Meharry Med Coll, Comp Sci & Data Sci, Nashville, TN 37208 USA
基金
中国国家自然科学基金;
关键词
Federated learning; homomorphic encryption; privacy-preserving; convolutional neural networks; IoT-enabled healthcare system; SCHEME;
D O I
10.1109/TNSE.2022.3185327
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the federated learning mechanism is introduced into the deep learning of medical models in Internet of Things (IoT)-based healthcare system. Cryptographic primitives, including masks and homomorphic encryption, are applied for further protecting local models, so as to prevent the adversary from inferring private medical data by various attacks such as model reconstruction attack or model inversion attack, etc. The qualities of the datasets owned by different participants are considered as the main factor for measuring the contribution rate of the local model to the global model in each training epoch, instead of the size of datasets commonly used in deep learning. A dropout-tolerable scheme is proposed in which the process of federated learning would not be terminated if the number of online clients is not less than a preset threshold. Through the analysis of the security, it shows that the proposed scheme satisfies data privacy. Computation cost and communication cost are also analyzed theoretically. Finally, skin lesion classification using training images provided by the HAM10000 medical dataset is set as an example of healthcare applications. Experimental results show that compared with existing schemes, the proposed scheme obtained promising results while ensuring privacy preserving.
引用
收藏
页码:2864 / 2880
页数:17
相关论文
共 50 条
  • [21] Fully homomorphic encryption-based privacy-preserving scheme for cross edge blockchain network
    Ma, Zhaofeng
    Wang, Jingyu
    Gai, Keke
    Duan, Pengfei
    Zhang, Yuqing
    Luo, Shoushan
    JOURNAL OF SYSTEMS ARCHITECTURE, 2023, 134
  • [22] Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning
    Fang, Haokun
    Qian, Quan
    FUTURE INTERNET, 2021, 13 (04):
  • [23] Efficiency Optimization Techniques in Privacy-Preserving Federated Learning With Homomorphic Encryption: A Brief Survey
    Xie, Qipeng
    Jiang, Siyang
    Jiang, Linshan
    Huang, Yongzhi
    Zhao, Zhihe
    Khan, Salabat
    Dai, Wangchen
    Liu, Zhe
    Wu, Kaishun
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (14): : 24569 - 24580
  • [24] Privacy-preserving using homomorphic encryption in Mobile IoT systems
    Ren, Wang
    Tong, Xin
    Du, Jing
    Wang, Na
    Li, Shan Cang
    Min, Geyong
    Zhao, Zhiwei
    Bashir, Ali Kashif
    COMPUTER COMMUNICATIONS, 2021, 165 : 105 - 111
  • [25] Privacy-preserving using homomorphic encryption in Mobile IoT systems
    Ren, Wang
    Tong, Xin
    Du, Jing
    Wang, Na
    Li, Shan Cang
    Min, Geyong
    Zhao, Zhiwei
    Bashir, Ali Kashif
    Li, Shan Cang (s.c.li@uestc.edu.cn), 1600, Elsevier B.V. (165): : 105 - 111
  • [26] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [27] Privacy-Preserving Deep Learning With Homomorphic Encryption: An Introduction
    Falcetta, Alessandro
    Roveri, Manuel
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (03) : 14 - 25
  • [28] Privacy Preserving Federated Learning Using CKKS Homomorphic Encryption
    Qiu, Fengyuan
    Yang, Hao
    Zhou, Lu
    Ma, Chuan
    Fang, LiMing
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 427 - 440
  • [29] Privacy-Preserving Smart Lock System for IoT-enabled Rental House Markets
    Wang, Bo
    Wang, Lingling
    Guo, Hongliang
    Zhou, Peng
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 664 - 669
  • [30] Memory Efficient Privacy-Preserving Machine Learning Based on Homomorphic Encryption
    Podschwadt, Robert
    Ghazvinian, Parsa
    GhasemiGol, Mohammad
    Takabi, Daniel
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY, ACNS 2024, PT II, 2024, 14584 : 313 - 339